白云石石灰结晶流化床污水除磷工艺优化

葛杰, 宋永会, 钱锋, 王毅力, 林郁. 白云石石灰结晶流化床污水除磷工艺优化[J]. 环境工程学报, 2015, 9(2): 586-594. doi: 10.12030/j.cjee.20150214
引用本文: 葛杰, 宋永会, 钱锋, 王毅力, 林郁. 白云石石灰结晶流化床污水除磷工艺优化[J]. 环境工程学报, 2015, 9(2): 586-594. doi: 10.12030/j.cjee.20150214
Ge Jie, Song Yonghui, Qian Feng, Wang Yili, Lin Yu. Process optimization for phosphorus removal from wastewater by dolomite fluidized bed crystallization[J]. Chinese Journal of Environmental Engineering, 2015, 9(2): 586-594. doi: 10.12030/j.cjee.20150214
Citation: Ge Jie, Song Yonghui, Qian Feng, Wang Yili, Lin Yu. Process optimization for phosphorus removal from wastewater by dolomite fluidized bed crystallization[J]. Chinese Journal of Environmental Engineering, 2015, 9(2): 586-594. doi: 10.12030/j.cjee.20150214

白云石石灰结晶流化床污水除磷工艺优化

  • 基金项目:

    国家自然科学基金资助项目(51078339)

    中央级公益性科研院所基本科研业务专项(2011KYYW-01)

  • 中图分类号: X703

Process optimization for phosphorus removal from wastewater by dolomite fluidized bed crystallization

  • Fund Project:
  • 摘要: 为了获取优化的污水除磷工艺,基于前期对白云石石灰结晶流化床去除厌氧消化上清液中磷的工艺条件和参数的初步探究,考察了不同酸化程度下白云石石灰释放Mg2+、Ca2+的效果,并根据MAP反应特点,选择出酸化液体积为5、6.5和10 mL,分别对应n(Mg)/n(P)为0.6、1.4、2.2进行后续实验。利用响应面法(RSM)对白云石石灰结晶流化床强化除磷工艺的影响因素进行分析和探讨,考察了pH值、n(Mg)/n(P)与停留时间(HRT)(分别记为X1、X2、X3)及各因素之间交互作用对磷去除率的影响,并利用扫描电子显微镜、X射线衍射和傅里叶变换红外光谱对产物进行表征,得出最佳工艺参数为pH=9.5、n(Mg)/n(P)=2.2、HRT=3.0 h。RSM法所建立的回归模型显著,实验精准度、精密度和可信度均在合理范围内,回归方程中X1、X2、X3、X1 X2、X1 X3、X12、X22、X32对磷去除率影响显著。产物MAP晶形较好,但由于废水的碱度较大(20 mmol/L),产物中含有大量的CaCO3沉淀。
  • 加载中
  • [1] Song Yonghui, Yuan Peng, Zheng Binghui, et al. Nutrients removal and recovery by crystallization of magnesium ammonium phosphate from synthetic swine wastewater. Chemosphere, 2007, 69(2): 319-324
    [2] CEEP. Phosphorus recovery of recycling from sewage and animal manures, summary of the second international conference on recovery of phosphates from sewage and animal wastes. The Netherlands: Noordwijkerhout, 2001
    [3] Hosni K., Ben-Moussa S, Chachi A., et al. The removal of PO43-by calcium hydroxide from synthetic wastewater: Optimisation of the operating conditions. Desalination, 2008, 223(1-3): 337-343
    [4] 张自杰, 林荣忱, 金儒霖. 排水工程(下册)(第4版). 北京: 中国建筑工业出版社, 2000
    [5] 王磊, 梅翔, 王金梅, 等. 污泥厌氧消化液中碳酸盐对回收磷的影响. 环境工程学报, 2010, 4(7): 1519-1524
    [6] Wang Lei, Mei Xiang, Wang Jinmei, et al. Effect of carbonate on phosphorus recovery from anaerobic digestion supernatant of sewage sludge. Chinese Journal of Environmental Engineering, 2010, 4(7): 1519-1524 (in Chinese)
    [7] Pastor L., Mangin D., Ferrer J., et al. Struvite formation from the supernatants of an anaerobic digestion pilot plant. Bioresource Technology, 2010, 101(1): 118-125
    [8] Massey M. S., Ippolito J. A., Davis J. G., et al. Macroscopic and microscopic variation in recovered magnesium phosphate materials: Implications for phosphorus removal processes and product re-use. Bioresource Technology, 2010, 101(3): 877-885
    [9] Qui Guanglei, Song Yonghui, Zeng Ping, et al. Phosphorus recovery from fosfomycin pharmaceutical wastewater by wet air oxidation and phosphate crystallization. Chemosphere, 2011, 84(2): 241-246
    [10] Tran N., Drogui P., Blais J. F., et al. Phosphorus removal from spiked municipal wastewater using either electrochemical coagulation or chemical coagulation as tertiary treatment. Separation and Purification Technology, 2012, 95(19): 16-25
    [11] Caravelli A. H., De Gregorio C., Zaritzky N. E. Effect of operating conditions on the chemical phosphorus removal using ferric chloride by evaluating orthophosphate precipitation and sedimentation of formed precipitates in batch and continuous systems. Chemical Engineering Journal, 2012, 209(15): 469-477
    [12] Kabdaşh I., Şafak A., Tünay O. Bench-scale evaluation of treatment schemes incorporating struvite precipitation for young landfill leachate. Waste Management, 2008, 28(11): 2386-2392
    [13] 梅翔, 王欣, 杨旭, 等. 利用白云石提供钙镁源从污泥厌氧消化液中回收磷. 水处理技术, 2012, 38(12): 48-53
    [14] Mei Xiang, Wang Xin, Yang Xu, et al. Phosphorus recovery from anaerobic digestion supernatant of sewage sludge by way of dolomite providing calcium and magnesium sources. Technology of Water Treatment, 2012, 38(12): 48-53 (in Chinese)
    [15] Zhang Tao, Ding Lili, Ren Hongqiang, et al. Thermodynamic modeling of ferric phosphate precipitation for phosphorus removal and recovery from wastewater. Journal of Hazardous Materials, 2010, 176(1-3): 444-450
    [16] 霍守亮, 席北斗, 刘鸿亮, 等. 磷酸铵镁沉淀法去除与回收废水中氮磷的应用研究进展. 化工进展, 2007, 26(3): 371-376
    [17] Huo Shouliang, Xi Beidou, Liu Hongliang, et al. Removal and recovery of nitrogen and phosphorus from wasterwater by struvite crystallization. Chemical Industry and Engineering Progress, 2007, 26(3): 371-376 (in Chinese)
    [18] Jaffer Y., Clark T. A., Pearce P., et al. Potential phosphorus recovery by struvite formation. Water Research, 2002, 36(7): 1834-1842
    [19] 王慧贞, 王绍贵. 以磷酸钙盐形式从污水厂回收磷研究. 中国给水排水, 2006, 22(9): 93-96
    [20] Wang Huizhen, Wang Shaogui. Study on phosphorus recovery by calcium phosphate precipitation from wastewater treatment plant. China Water & Wastewater, 2006, 22(9): 93-96 (in Chinese)
    [21] Le Correa K. S., Valsami-Jonesb E., Hobbs P., et al. Phosphorus recovery from wastewater by struvite crystallization: A review. Environmental Science & Technology, 2009, 39(6): 433-477
    [22] 国家环境保护总局. 水和废水监测分析方法(第4版). 北京: 中国环境科学出版社, 2002
    [23] Wang Jiansen, Song Yonghui, Yuan Peng, et al. Modeling the crystallization of magnesium ammonium phosphate for phosphorus recovery. Chemosphere, 2006, 65(7): 1182-1187
    [24] 袁鹏, 宋永会, 袁芳, 等. 磷酸铵镁结晶法去除和回收养猪废水中营养元素的实验研究. 环境科学学报, 2007, 27(7): 1127-1134
    [25] Yuan Peng, Song Yonghui, Yuan Fang, et al. Nutrient removal and recovery from swine wastewater by crystallization of magnesium ammonium phosphate. Acta Science Circumstantiae, 2007, 27(7): 1127-1134 (in Chinese)
    [26] 牟世芬, 王峥. 离子色谱中一个常常提出的问题—碳酸根的测定和干扰. 环境化学, 2001, 20(6): 622-623
    [27] Mao Shifang, Wang Zheng. A question raised from ion chromatography-determination and interference of carbonate. Environmental Chemistry, 2001, 20(6): 622-623 (in Chinese)
    [28] 刘妮, 王亮, 刘道平. 二氧化碳水合物储气特性的实验研究. 环境工程学报, 2010, 4(3): 621-624
    [29] Liu Ni, Wang Liang, Liu Daoping. Experiment on gas storage characteristics of carbon dioxide hydrate. Chinese Journal of Environmental Engineering, 2010, 4(3): 621-624 (in Chinese)
    [30] Muralidhar R. V., Chirumamla R. R., Marchant R., et al. A response surface approach for the comparison of lipase production by Candida cylindracea using two different carbon sources. Biochemical Engineering Journal, 2001, 9(1): 17-23
    [31] Bhuiyan M., Iqbal H., Mavinic D. S., et al. Nucleation and growth kinetics of struvite in a fluidized bed reactor. Journal of Crystal Growth, 2008, 310(6): 1187-1194
    [32] Ye Zhilong, Chen Shaohua, Wang Shumei, et al. Phosphorus recovery from synthetic swine wastewater by chemical precipitation using response surface methodology. Journal of Hazardous Materials, 2010, 176(1-3): 1083-1088
    [33] Stratful I., Scrimshaw M. D., Lester J. N. Conditions influencing the precipitation of magnesium ammonium phosphate. Water Research, 2001, 35(17): 4191-4199
    [34] Kofina A. N., Koutsoukos P. G. Spontaneous precipitation of struvite from synthetic wastewater solutions. Crystal Growth & Design, 2005, 5(2): 489-496
    [35] 董滨, 段妮娜, 陈洪斌, 等. 猪场污水回收磷酸铵镁结晶形态及方式研究. 水处理技术, 2009, 35(9): 22-25
    [36] Dong Bin, Duan Ni’na, Chen Hongbin, et al. Study on crystal morphology and recovery methods of struvite. Technology of Water Treatment, 2009, 35(9): 22-25 (in Chinese)
    [37] Li Jidong, Li Yubao, Zhang Li, et al. Composition of calcium deficient Na-containing carbonate hydroxyapatite modified with Cu(Ⅱ) and Zn(Ⅱ) ions. Applied Surface Science, 2008, 254(9): 2844-2850
    [38] 常建华, 董绮功. 波普原理及解析(第2版). 北京: 科学出版社, 2005
    [39] Cao Xinde, Harris W. Carbonate and magnesium interactive effect on calcium phosphate precipitation. Environmental Science & Technology, 2008, 42(2): 436-442
  • 加载中
计量
  • 文章访问数:  2268
  • HTML全文浏览数:  1705
  • PDF下载数:  894
  • 施引文献:  0
出版历程
  • 收稿日期:  2014-02-19
  • 刊出日期:  2015-02-07
葛杰, 宋永会, 钱锋, 王毅力, 林郁. 白云石石灰结晶流化床污水除磷工艺优化[J]. 环境工程学报, 2015, 9(2): 586-594. doi: 10.12030/j.cjee.20150214
引用本文: 葛杰, 宋永会, 钱锋, 王毅力, 林郁. 白云石石灰结晶流化床污水除磷工艺优化[J]. 环境工程学报, 2015, 9(2): 586-594. doi: 10.12030/j.cjee.20150214
Ge Jie, Song Yonghui, Qian Feng, Wang Yili, Lin Yu. Process optimization for phosphorus removal from wastewater by dolomite fluidized bed crystallization[J]. Chinese Journal of Environmental Engineering, 2015, 9(2): 586-594. doi: 10.12030/j.cjee.20150214
Citation: Ge Jie, Song Yonghui, Qian Feng, Wang Yili, Lin Yu. Process optimization for phosphorus removal from wastewater by dolomite fluidized bed crystallization[J]. Chinese Journal of Environmental Engineering, 2015, 9(2): 586-594. doi: 10.12030/j.cjee.20150214

白云石石灰结晶流化床污水除磷工艺优化

  • 1.  北京林业大学环境科学与工程学院, 北京 100083
  • 2.  中国环境科学研究院城市水环境科技创新基地, 北京 100012
  • 3.  中国地质大学水资源与环境工程北京市重点实验室, 北京 100083
基金项目:

国家自然科学基金资助项目(51078339)

中央级公益性科研院所基本科研业务专项(2011KYYW-01)

摘要: 为了获取优化的污水除磷工艺,基于前期对白云石石灰结晶流化床去除厌氧消化上清液中磷的工艺条件和参数的初步探究,考察了不同酸化程度下白云石石灰释放Mg2+、Ca2+的效果,并根据MAP反应特点,选择出酸化液体积为5、6.5和10 mL,分别对应n(Mg)/n(P)为0.6、1.4、2.2进行后续实验。利用响应面法(RSM)对白云石石灰结晶流化床强化除磷工艺的影响因素进行分析和探讨,考察了pH值、n(Mg)/n(P)与停留时间(HRT)(分别记为X1、X2、X3)及各因素之间交互作用对磷去除率的影响,并利用扫描电子显微镜、X射线衍射和傅里叶变换红外光谱对产物进行表征,得出最佳工艺参数为pH=9.5、n(Mg)/n(P)=2.2、HRT=3.0 h。RSM法所建立的回归模型显著,实验精准度、精密度和可信度均在合理范围内,回归方程中X1、X2、X3、X1 X2、X1 X3、X12、X22、X32对磷去除率影响显著。产物MAP晶形较好,但由于废水的碱度较大(20 mmol/L),产物中含有大量的CaCO3沉淀。

English Abstract

参考文献 (39)

返回顶部

目录

/

返回文章
返回