黄铁矿还原固定水中的高铼酸根

王莉霄, 钱天伟, 丁庆伟. 黄铁矿还原固定水中的高铼酸根[J]. 环境工程学报, 2015, 9(2): 627-632. doi: 10.12030/j.cjee.20150220
引用本文: 王莉霄, 钱天伟, 丁庆伟. 黄铁矿还原固定水中的高铼酸根[J]. 环境工程学报, 2015, 9(2): 627-632. doi: 10.12030/j.cjee.20150220
Wang Lixiao, Qian Tianwei, Ding Qingwei. Reduction-immobilization of perrhenate in water by pyrite[J]. Chinese Journal of Environmental Engineering, 2015, 9(2): 627-632. doi: 10.12030/j.cjee.20150220
Citation: Wang Lixiao, Qian Tianwei, Ding Qingwei. Reduction-immobilization of perrhenate in water by pyrite[J]. Chinese Journal of Environmental Engineering, 2015, 9(2): 627-632. doi: 10.12030/j.cjee.20150220

黄铁矿还原固定水中的高铼酸根

  • 基金项目:

    国家自然科学基金资助项目(41072265

    41272375)

    太原市科技局大学生创新创业专款(120164075)

    山西省回国留学人员科技项目重点资助项目(2013-重点2)

    山西省科技重大专项(201311D1028)

  • 中图分类号: X771

Reduction-immobilization of perrhenate in water by pyrite

  • Fund Project:
  • 摘要: 以铼作为放射性锝的替代元素,用黄铁矿粉末对高铼酸根的还原固定进行了研究。采用球磨法制备出黄铁矿粉末。分别研究了不同固液比、不同的初始pH值和不同粒径条件下,黄铁矿粉末对高铼酸根的还原固定效果。结果显示,固液比为1:10(g/mL)为宜,在体系初始pH为12时,形成铁氧体,吸附高铼酸根,提升还原固定效果。对产物进行XPS表征,证明还原产物为ReO2。在乙醇介质中机械活化后利用超声分散可得到具有大的比表面积和晶格畸变的粒径较小的黄铁矿粉末,使其反应的活性位点增多,处理效果明显好于大粒径的黄铁矿粉末,在相对较短的时间内,铼的去除率可以达42%。在缺氧环境下黄铁矿能够长期保持有效性,在地质处置库应用中有实际意义。
  • 加载中
  • [1] Wildung R. E., McFadden K. M., Garland T. R. Technetium sources and behavior in the environment. Journal of Environmental Quality, 1979, 8(2): 156-161
    [2] Lieser K. H., Bauscher C. Technetium in the hydrosphere and in the geosphere I: Chemistry of technetium and iron in natural waters and influence of the redox potential on the sorption of technetium. Radiochima Acta, 1987, 42(4): 205-213
    [3] Kaplan D. I. Influence of surface charge of an Fe-oxide and an organic matter dominated soil on iodide and pertechnetate sorption. Radiochima Acta, 2003, 91 (3): 173-178
    [4] James G. Speight, PhD. Lange's Handbook of Chemistry(Sixteenth Edition).USA: McGraw-Hill Education, 2005:395-399
    [5] Frederic P., Edward M.,Gordon D., et al. Technetium chemistry in the fuel cycle: Combining basic and applied studies. Inorganic Chemistry,2013,52(7):3573-3578
    [6] Schwochau K. Technetium: Chemistry and Radiopharmaceutical Applications. Wiley-VCH: Weinheim, Germany, 2000: 43-44
    [7] Kim E., Benèdetti M. F. Jacques Boulegue. Removal of dissolved rhenium by sorption onto organic polymers: Study of rhenium as an analogue of radioactive technetium.Water Research, 2004, 38(2):448-454
    [8] Kim E., Boulègue J. Chemistry of rhenium as an analogue of technetium: Experimental studies of the dissolution of rhenium oxides in aqueous solutions. Radiochima Acta,2003,91 (4):211-216
    [9] Darab J.G., Smith P.A. Chemistry of technetium and rhenium during low level waste vitrification. Chemistry of Materials, 1996, 8(5): 1004-1021
    [10] Wakoff B., Nagy K. L. Perrhenate uptake by iron and aluminum oxyhydroxides: An analogue for pertechnetate incorporation in Hanford waste tank sludges.Environmental Science & Technology, 2004, 38(6): 1765-1771
    [11] Vinsova H., Konirova R., Koudelkova M.Sorption of technetium and rhenium on natural sorbents under aerobic conditions. Journal of Radioanalytical and Nuclear Chemistry, 2004,261( 2):407-413
    [12] 李宽良,李书绅,赵英杰,等.核废物处置地球化学工程屏障研究.成都理工大学学报(自然科学版),2004,31(2):83-89 Li Kuanliang,Li Shushen,Zhao Yingjie, et al. Experimental research on geochemical engineering barrier used in radioactive waste disposal. Journal of Chengdu University of Technology(Science & Technology),2004,31(2):83-89(in Chinese)
    [13] 石俊仙,鲁安怀.黄铁矿处理含Cr(Ⅵ)废水体系的研究.内蒙古工业大学学报,2001,20(1):6-9 Shi Junxian,Lu Anhuai. Experimental research on treatment of Cr(Ⅵ)-bearing wastewater by pyrite. Journal of inner Mongolia Polytechnic University. 2001,20(1):6-9 ( in Chinese)
    [14] Aimoz L., Curti E., Mader U. Iodide Interaction with natural pyrite. Journal of Radioanalytical and Nuclear Chemistry, 2011, 288(2): 517-524
    [15] Chandra A. P., Gerson A. R. The mechanisms of pyrite oxidation and leaching: A Fundamental Perspective,Surface Science Reports, 2010,65(9): 293-315
    [16] Kang Minglliang, Chen Fanrong, Wu Shijun, et al. Effect of pH on aqueous Se(IV) reduction by pyrite.Environmental Science & Technology, 2011, 45(7): 2704-2710
    [17] Wooyong Um, Chang Hyun-Shik, Jonathan P., et al. Immobilization of 99-Technetium (VII) by Fe(II)-Goethite and Limited Reoxidation. Environmental Science & Technology, 2011, 45(11): 4904-4913
    [18] 靳正国,国瑞松,师春生,等.材料科学基础.天津:天津大学出版社,2005:147-149
    [19] 薛永强.粒度对纳米体系相变和化学反应的影响.太原:太原理工大学博士学位论文,2005 Xue Yongqiang. Effects of particle size on phase transitions and reactions of nanosystems. Taiyuan:Doctor Dissertation of Taiyuan University of Technology, 2005 (in Chinese)
  • 加载中
计量
  • 文章访问数:  2687
  • HTML全文浏览数:  2118
  • PDF下载数:  886
  • 施引文献:  0
出版历程
  • 收稿日期:  2014-01-21
  • 刊出日期:  2015-02-07
王莉霄, 钱天伟, 丁庆伟. 黄铁矿还原固定水中的高铼酸根[J]. 环境工程学报, 2015, 9(2): 627-632. doi: 10.12030/j.cjee.20150220
引用本文: 王莉霄, 钱天伟, 丁庆伟. 黄铁矿还原固定水中的高铼酸根[J]. 环境工程学报, 2015, 9(2): 627-632. doi: 10.12030/j.cjee.20150220
Wang Lixiao, Qian Tianwei, Ding Qingwei. Reduction-immobilization of perrhenate in water by pyrite[J]. Chinese Journal of Environmental Engineering, 2015, 9(2): 627-632. doi: 10.12030/j.cjee.20150220
Citation: Wang Lixiao, Qian Tianwei, Ding Qingwei. Reduction-immobilization of perrhenate in water by pyrite[J]. Chinese Journal of Environmental Engineering, 2015, 9(2): 627-632. doi: 10.12030/j.cjee.20150220

黄铁矿还原固定水中的高铼酸根

  • 1.  太原科技大学材料科学与工程学院, 太原 030024
  • 2.  太原科技大学环境与安全学院, 太原 030024
基金项目:

国家自然科学基金资助项目(41072265

41272375)

太原市科技局大学生创新创业专款(120164075)

山西省回国留学人员科技项目重点资助项目(2013-重点2)

山西省科技重大专项(201311D1028)

摘要: 以铼作为放射性锝的替代元素,用黄铁矿粉末对高铼酸根的还原固定进行了研究。采用球磨法制备出黄铁矿粉末。分别研究了不同固液比、不同的初始pH值和不同粒径条件下,黄铁矿粉末对高铼酸根的还原固定效果。结果显示,固液比为1:10(g/mL)为宜,在体系初始pH为12时,形成铁氧体,吸附高铼酸根,提升还原固定效果。对产物进行XPS表征,证明还原产物为ReO2。在乙醇介质中机械活化后利用超声分散可得到具有大的比表面积和晶格畸变的粒径较小的黄铁矿粉末,使其反应的活性位点增多,处理效果明显好于大粒径的黄铁矿粉末,在相对较短的时间内,铼的去除率可以达42%。在缺氧环境下黄铁矿能够长期保持有效性,在地质处置库应用中有实际意义。

English Abstract

参考文献 (19)

返回顶部

目录

/

返回文章
返回