响应面分析法优化Fe(Ⅲ)-亚硫酸盐去除废水中的砷

吉冰冰, 于英潭, 肖玫, 张琳, 李进军, 吴峰. 响应面分析法优化Fe(Ⅲ)-亚硫酸盐去除废水中的砷[J]. 环境工程学报, 2016, 10(9): 4803-4807. doi: 10.12030/j.cjee.201504141
引用本文: 吉冰冰, 于英潭, 肖玫, 张琳, 李进军, 吴峰. 响应面分析法优化Fe(Ⅲ)-亚硫酸盐去除废水中的砷[J]. 环境工程学报, 2016, 10(9): 4803-4807. doi: 10.12030/j.cjee.201504141
JI Bingbing, YU Yingtan, XIAO Mei, ZHANG Lin, LI Jinjun, WU Feng. Optimization for treatment of arsenic removal in wastewater by Fe(Ⅲ)-sulfite system using response surface methodology[J]. Chinese Journal of Environmental Engineering, 2016, 10(9): 4803-4807. doi: 10.12030/j.cjee.201504141
Citation: JI Bingbing, YU Yingtan, XIAO Mei, ZHANG Lin, LI Jinjun, WU Feng. Optimization for treatment of arsenic removal in wastewater by Fe(Ⅲ)-sulfite system using response surface methodology[J]. Chinese Journal of Environmental Engineering, 2016, 10(9): 4803-4807. doi: 10.12030/j.cjee.201504141

响应面分析法优化Fe(Ⅲ)-亚硫酸盐去除废水中的砷

  • 基金项目:

    国家自然科学基金资助项目(21077080)

    武汉大学资源与环境科学学院实验中心地理环境综合调查开放实验资助项目(610400011)

  • 中图分类号: X703.1

Optimization for treatment of arsenic removal in wastewater by Fe(Ⅲ)-sulfite system using response surface methodology

  • Fund Project:
  • 摘要: 利用Fe(Ⅲ)-亚硫酸盐体系对实际含砷酸性废水通过混凝-氧化-混凝工艺进行处理,并利用响应面分析法对工艺过程进行优化,结果发现二次多项式模型可以很好的模拟实验结果,根据模型所预测的最优条件是在氧化过程中pH为3.53、250 mL原液中Fe(Ⅲ)投加量为0.46 mmol、Na2SO3投加量为0.60 mmol,最终的响应值总砷去除率为90.70%,根据模型所预测的最优条件进行实验,得到总砷去除率实验值为93.90%,与模型预测值的相对偏差为3.53%。
  • 加载中
  • [1] VACLAVIKOVA M., GALLIOS G. P., HREDZAK S., et al. Removal of arsenic from water streams:An overview of available techniques. Clean Technologies and Environmental Policy, 2008, 10(1):89-95
    [2] EMETt M. T., KHOE G. H. Photochemical oxidation of arsenic by oxygen and iron in acidic solutions. Water Research, 2001, 35(3):649-656
    [3] WANG Yajie, XU Jing, ZHAO Yan, et al. Photooxidation of arsenite by natural goethite in suspended solution. Environmental Science and Pollution Research, 2013, 20(1):31-38
    [4] XU Jing, LI Jinjun, WU Feng, et al. Rapid photooxidation of As(Ⅲ) through surface complexation with nascent colloidal ferric hydroxide. Environmental Science and Technology, 2014, 48(1):272-278
    [5] CHEN Long, PENG Xinzi, LIU Jihao, et al. Decolorization of orange Ⅱ in aqueous solution by an Fe(Ⅱ)/sulfite system:Replacement of persulfate. Industrial & Engineering Chemistry Research, 2012, 51(42):13632-13638
    [6] 吉冰冰, 肖玫, 张琳, 等. 铁-亚硫酸盐配合物体系氧化处理硫酸厂的含砷废水. 水处理技术, 2014, 40(9):52-56 JI Bingbing, XIAO Mei, ZHANG Lin, et al. Oxidation and removal of arsenic-containing wastewater from sulfuric acid factory by iron-sulfite complex system. Technology of Water Treatment, 2014, 40(9):52-56(in Chinese)
    [7] 曾晓岚, 李作鑫, 丁文川, 等. 响应面法优化吹脱处理垃圾渗滤液. 水处理技术, 2011, 37(3):61-64 ZENG Xiaolan, LI Zuoxin, DING Wenchuan, et al. Optimization of ammonia nitrogen stripping of landfill leachate by response surface methodology. Technology of Water Treatment, 2011, 37(3):61-64(in Chinese)
    [8] BASKAN M. B., PALA A. A statistical experiment design approach for arsenic removal by coagulation process using aluminum sulfate. Desalination, 2010, 254(1/2/3):42-48
    [9] 魏健, 宋永会, 赵乐, 等. 响应面法优化Fenton预处理干法腈纶废水. 环境工程学报, 2013, 7(5):1695-1701 WEI Jian, SONG Yonghui, ZHAO Le, et al. Optimization of Fenton process for pretreatment of dry-spun acrylic fiber wastewater with response surface methodology. Chinese Journal of Environmental Engineering, 2013, 7(5):1695-1701(in Chinese)
    [10] 刘春明, 董秀芹, 张敏华. 响应面法优化超临界水氧化降解喹啉废水. 环境工程学报, 2012, 6(10):3568-3572 LIU Chunming, DONG Xiuqin, ZHANG Minhua. Optimization of supercritical water oxidation of quinoline wastewater by response surface methodological analysis. Chinese Journal of Environmental Engineering, 2012, 6(10):3568-3572(in Chinese)
    [11] 张会琴, 叶春松, 阳红, 等. 响应面法优化克浅十油田废水的混凝沉淀工艺. 环境工程学报, 2013, 7(1):169-174 ZHANG Huiqin, YE Chunsong, YANG Hong, et al. Optimization for treatment of oil field wastewater by coagulation sedimentation process using response surface methodology. Chinese Journal of Environmental Engineering, 2013, 7(1):169-174(in Chinese)
    [12] TRIPATHI P., SRIVASTAVA V. C., KUMAR A. Optimization of an azo dye batch adsorption parameters using Box-Behnken design. Desalination, 2009, 249(3):1273-1279
    [13] 胡维, 戴友芝, 彭喜, 等. 基于响应面法优化电絮凝处理含砷冶炼废水的研究. 工业水处理, 2014, 34(2):26-29 HU Wei, DAI Youzhi, PENG Xi, et al. Research on the response surface method applied to the optimized electrocoagulation used for the treatment of arsenic-containing smelting wastewater. Industrial Water Treatment, 2014, 34(2):26-29(in Chinese)
    [14] 张金玲, 钟耀广, 万金庆, 等. 响应面优化超声辅助提取羊栖菜中无机砷. 食品科学, 2013, 34(10):67-71 ZHANG Jinling, ZHONG Yaoguang, WAN Jinqing, et al. Optimization of ultrasonic-assisted extraction of inorganic arsenic in Sargassum fusiforme (Harv.) by response surface methodology. Food Science, 2013, 34(10):67-71(in Chinese)
    [15] 牟世芬, 刘克纳, 丁晓静. 离子色谱方法及应用. 北京:化学工业出版社, 2000
  • 加载中
计量
  • 文章访问数:  2121
  • HTML全文浏览数:  1572
  • PDF下载数:  698
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-07-03
  • 刊出日期:  2016-09-10
吉冰冰, 于英潭, 肖玫, 张琳, 李进军, 吴峰. 响应面分析法优化Fe(Ⅲ)-亚硫酸盐去除废水中的砷[J]. 环境工程学报, 2016, 10(9): 4803-4807. doi: 10.12030/j.cjee.201504141
引用本文: 吉冰冰, 于英潭, 肖玫, 张琳, 李进军, 吴峰. 响应面分析法优化Fe(Ⅲ)-亚硫酸盐去除废水中的砷[J]. 环境工程学报, 2016, 10(9): 4803-4807. doi: 10.12030/j.cjee.201504141
JI Bingbing, YU Yingtan, XIAO Mei, ZHANG Lin, LI Jinjun, WU Feng. Optimization for treatment of arsenic removal in wastewater by Fe(Ⅲ)-sulfite system using response surface methodology[J]. Chinese Journal of Environmental Engineering, 2016, 10(9): 4803-4807. doi: 10.12030/j.cjee.201504141
Citation: JI Bingbing, YU Yingtan, XIAO Mei, ZHANG Lin, LI Jinjun, WU Feng. Optimization for treatment of arsenic removal in wastewater by Fe(Ⅲ)-sulfite system using response surface methodology[J]. Chinese Journal of Environmental Engineering, 2016, 10(9): 4803-4807. doi: 10.12030/j.cjee.201504141

响应面分析法优化Fe(Ⅲ)-亚硫酸盐去除废水中的砷

  • 1. 武汉大学资源与环境科学学院, 武汉 430079
基金项目:

国家自然科学基金资助项目(21077080)

武汉大学资源与环境科学学院实验中心地理环境综合调查开放实验资助项目(610400011)

摘要: 利用Fe(Ⅲ)-亚硫酸盐体系对实际含砷酸性废水通过混凝-氧化-混凝工艺进行处理,并利用响应面分析法对工艺过程进行优化,结果发现二次多项式模型可以很好的模拟实验结果,根据模型所预测的最优条件是在氧化过程中pH为3.53、250 mL原液中Fe(Ⅲ)投加量为0.46 mmol、Na2SO3投加量为0.60 mmol,最终的响应值总砷去除率为90.70%,根据模型所预测的最优条件进行实验,得到总砷去除率实验值为93.90%,与模型预测值的相对偏差为3.53%。

English Abstract

参考文献 (15)

返回顶部

目录

/

返回文章
返回