石墨烯-二氧化钛复合物对泰乐菌素的光解作用

曾晓明, 郭学涛, 杨琛, 党志, 胡芸. 石墨烯-二氧化钛复合物对泰乐菌素的光解作用[J]. 环境工程学报, 2015, 9(7): 3223-3228. doi: 10.12030/j.cjee.20150724
引用本文: 曾晓明, 郭学涛, 杨琛, 党志, 胡芸. 石墨烯-二氧化钛复合物对泰乐菌素的光解作用[J]. 环境工程学报, 2015, 9(7): 3223-3228. doi: 10.12030/j.cjee.20150724
Zeng Xiaoming, Guo Xuetao, Yang Chen, Dang Zhi, Hu Yun. Photodegradation of tylosin by graphene-TiO2[J]. Chinese Journal of Environmental Engineering, 2015, 9(7): 3223-3228. doi: 10.12030/j.cjee.20150724
Citation: Zeng Xiaoming, Guo Xuetao, Yang Chen, Dang Zhi, Hu Yun. Photodegradation of tylosin by graphene-TiO2[J]. Chinese Journal of Environmental Engineering, 2015, 9(7): 3223-3228. doi: 10.12030/j.cjee.20150724

石墨烯-二氧化钛复合物对泰乐菌素的光解作用

  • 基金项目:

    国家自然科学基金资助项目(41072268,21277051)

    广州市珠江科技新星项目

    广东省普通高校水土环境毒害性污染物防治与生物修复重点实验室开放基金资助项目

  • 中图分类号: X703

Photodegradation of tylosin by graphene-TiO2

  • Fund Project:
  • 摘要: 为了在可见光条件下有效光解去除抗生素,制备了石墨烯-二氧化钛复合物(Graphene-TiO2,G-TiO2),考察了不同因素对G-TiO2的光解作用的影响以及催化剂的重复利用效果。研究结果表明,G-TiO2在可见光下对泰乐菌素(tylosin,TYL)有一定的去除效果,光解速率随溶液pH的增加先增加后减小,随着TYL初始浓度的增加而减小。石墨烯含量为1%时光解效果最好,且催化剂有较好的重复利用性。初步分析,G-TiO2对TYL的去除包括吸附和光解2个过程,且光生空穴及·OH自由基反应可能是TYL光解的主要机制。本研究表明,G-TiO2是一种理想材料,可用于去除水中的抗生素微污染。
  • 加载中
  • [1] Acero J.L.,Benitez F.J.,Real F.J.,et al.Kinetics of aqueous chlorination of some pharmaceuticals and their elimination from water matrices.Water Research,2010,44(14):4158-4170
    [2] Schmitt H.,Stoob K.,Hamscher G.,et al.Tetracyclines and tetracycline resistance in agricultural soils:Microcosm and field studies.Microbial Ecology,2006,51(3):267-276
    [3] Guo Xuetao,Yang Chen,Dang Zhi,et al.Sorption thermodynamics and kinetics properties of tylosin and sulfamethazine on goethite.Chemical Engineering Journal,2013,223:59-67
    [4] Brown K.D.,Kulis J.,Thomson B.,et al.Occurrence of antibiotics in hospital,residential,and dairy effluent,municipal wastewater,and the Rio Grande in New Mexico.Science of the Total Environment,2006,366(2-3):772-783
    [5] Chen Yong,Hu Chun,Qu Jiuhui,et al.Photodegradation of tetracycline and formation of reactive oxygen species in aqueous tetracycline solution under simulated sunlight irradiation.Journal of Photochemistry and Photobiology A:Chemistry,2008,197(1):81-87
    [6] 张倩,杨琛,党志,等.泰乐菌素在华南地区农业土壤上的吸附动力学和热力学特性.环境科学研究,2010,23(8):1019-1024 Zhang Qian,Yang Chen,Dang Zhi,et al.Sorption kinetic and thermodynamic properties of tylosin on agriculture soils in South China.Research of Environmental Sciences,2010,23(8):1019-1024(in Chinese)
    [7] 姜蕾,陈书怡,杨蓉,等.长江三角洲地区典型废水中抗生素的初步分析.环境化学,2008,27(3):371-374 Jiang Lei,Chen Shuyi,Yang Rong,et al.Occurrence of antibiotics in the aquatic environment of the Changjiang delta,China.Environmental Chemistry,2008,27(3):371-374(in Chinese)
    [8] 刘吉强,诸葛玉平,杨鹤,等.兽药抗生素的残留状况与环境行为.土壤通报,2008,39(5):1198-1203 Liu Jiqing,Zhuge Yuping,Yang He,et al.Environmental fate and residue status of veterinary drugs:A review.Chinese Journal of Soil Science,2008,39(5):1198-1203(in Chinese)
    [9] Guo Weilin,Su Shengnan,Yi Chunliang,et al.Degradation of antibiotics amoxicillin by Co3O4-catalyzed peroxymonosulfate system.Environmental Progress & Sustainable Energy,2013,32(2):193-197
    [10] Zhao Chun,Pelaez M.,Duan Xiaodi,et al.Role of pH on photolytic and photocatalytic degradation of antibiotic oxytetracycline in aqueous solution under visible/solar light:Kinetics and mechanism studies.Applied Catalysis B:Environmental,2013,134-135:83-92
    [11] Andreozzi R.,Raffaele M.,Nicklas P.Pharmaceuticals in STP effluents and their solar photodegradation in aquatic environment.Chemosphere,2003,50(10):1319-1330
    [12] Beltran F.J.,Aguinaco A.,García-Araya J.F.,et al.Ozone and photocatalytic processes to remove the antibiotic sulfamethoxazole from water.Water Research,2008,42(14):3799-3808
    [13] Calza P.,Medana C.,Pazzi M.,et al.Photocatalytic transformations of sulphonamides on titanium dioxide.Applied Catalysis B:Environmental,2004,53(1):63-69
    [14] Abellán M.N.,Giménez J.,Esplugas S.Photocatalytic degradation of antibiotics:The case of sulfamethoxazole and trimethoprim.Catalysis Today,2009,144(1-2):131-136
    [15] Huo Yuning,Zhu Jian,Li Jianxia,et al.An active La/TiO2 photocatalyst prepared by ultrasonication-assisted sol-gel method followed by treatment under supercritical conditions.Journal of Molecular Catalysis A:Chemical,2007,278(1-2):237-243
    [16] Li Zheng,Pan Xiaobo,Wang Tianlong,et al.Comparison of the killing effects between nitrogen-doped and pure TiO2 on HeLa cells with visible light irradiation.Nanoscale Research Letters,2013,8(1):1-7
    [17] Sun Bo,Shi Tielin,Peng Zhengchun,et al.Controlled fabrication of Sn/TiO2 nanorods for photoelectron chemical water splitting.Nanoscale Research Letters,2013,8(1):1-8
    [18] Hummers Jr.W.S.,Offeman,R.E.Preparation of graphitic oxide.Journal of the American Chemical Society,1958,80(6):1339-1339
    [19] Yu Jianqiang,Zhang Lizhi,Zheng Zhi,et al.Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity.Chemistry of Materials,2003,15(11):2280-2286
    [20] Pouilleau J.,Devilliers D.,Groult H.,et al.Surface study of a titanium-based ceramic electrode material by X-ray photoelectron spectroscopy.Journal of Materials Science,1997,32(21):5645-5651
    [21] Bi Yingpu,Ouyang Shuxin,Umezawa N.,et al.Facet effect of single-crystalline Ag3PO4 sub-microcrystals on photocatalytic properties.Journal of the American Chemical Society,2011,133(17):6490-6492
    [22] Lau T.K.,Chu W.,Graham N.J.D.The aqueous degradation of butylated hydroxyanisole by 470 UV/S2O82-:Study of reaction mechanisms via dimerization and mineralization.Environmental Science & Technology,2007,41(2):613-619
    [23] Li Ying,Zhang Fushen.Catalytic oxidation of methyl orange by an amorphous FeOOH catalyst developed from a high iron-containing fly ash.Journal of Chemical Engineering,2010,158(2):148-153
    [24] Mai S.,Syzranov S.V.,Efetov K.B.Photocurrent in a visible-light graphene photodiode.Physical Review B,2011,83(3):033402
    [25] Akhavan O.,Abdolahad M.,Abdi Y.,et al.Synthesis of titania/carbon nanotube heterojunction arrays for photoinactivation of E. coli in visible light irradiation.Carbon,2009,47(14):3280-3287
  • 加载中
计量
  • 文章访问数:  1686
  • HTML全文浏览数:  1161
  • PDF下载数:  648
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-03-11
  • 刊出日期:  2015-07-02
曾晓明, 郭学涛, 杨琛, 党志, 胡芸. 石墨烯-二氧化钛复合物对泰乐菌素的光解作用[J]. 环境工程学报, 2015, 9(7): 3223-3228. doi: 10.12030/j.cjee.20150724
引用本文: 曾晓明, 郭学涛, 杨琛, 党志, 胡芸. 石墨烯-二氧化钛复合物对泰乐菌素的光解作用[J]. 环境工程学报, 2015, 9(7): 3223-3228. doi: 10.12030/j.cjee.20150724
Zeng Xiaoming, Guo Xuetao, Yang Chen, Dang Zhi, Hu Yun. Photodegradation of tylosin by graphene-TiO2[J]. Chinese Journal of Environmental Engineering, 2015, 9(7): 3223-3228. doi: 10.12030/j.cjee.20150724
Citation: Zeng Xiaoming, Guo Xuetao, Yang Chen, Dang Zhi, Hu Yun. Photodegradation of tylosin by graphene-TiO2[J]. Chinese Journal of Environmental Engineering, 2015, 9(7): 3223-3228. doi: 10.12030/j.cjee.20150724

石墨烯-二氧化钛复合物对泰乐菌素的光解作用

  • 1.  华南理工大学环境与能源学院, 广州 510006
  • 2.  安徽理工大学地球与环境学院, 淮南 232001
  • 3.  广东省大气 环境与污染控制重点实验室, 广州 510006
  • 4.  工业聚集区污染控制与生态修复教育部重点实验室, 广州 510006
基金项目:

国家自然科学基金资助项目(41072268,21277051)

广州市珠江科技新星项目

广东省普通高校水土环境毒害性污染物防治与生物修复重点实验室开放基金资助项目

摘要: 为了在可见光条件下有效光解去除抗生素,制备了石墨烯-二氧化钛复合物(Graphene-TiO2,G-TiO2),考察了不同因素对G-TiO2的光解作用的影响以及催化剂的重复利用效果。研究结果表明,G-TiO2在可见光下对泰乐菌素(tylosin,TYL)有一定的去除效果,光解速率随溶液pH的增加先增加后减小,随着TYL初始浓度的增加而减小。石墨烯含量为1%时光解效果最好,且催化剂有较好的重复利用性。初步分析,G-TiO2对TYL的去除包括吸附和光解2个过程,且光生空穴及·OH自由基反应可能是TYL光解的主要机制。本研究表明,G-TiO2是一种理想材料,可用于去除水中的抗生素微污染。

English Abstract

参考文献 (25)

返回顶部

目录

/

返回文章
返回