磷酸铵镁结晶技术处理模拟氨氮废水

余荣台, 申亚群, 任洪强. 磷酸铵镁结晶技术处理模拟氨氮废水[J]. 环境工程学报, 2015, 9(10): 4627-4631. doi: 10.12030/j.cjee.20151003
引用本文: 余荣台, 申亚群, 任洪强. 磷酸铵镁结晶技术处理模拟氨氮废水[J]. 环境工程学报, 2015, 9(10): 4627-4631. doi: 10.12030/j.cjee.20151003
Yu Rongtai, Shen Yaqun, Ren Hongqiang. Ammonium removal from simulated wastewater by struvite crystallization technology[J]. Chinese Journal of Environmental Engineering, 2015, 9(10): 4627-4631. doi: 10.12030/j.cjee.20151003
Citation: Yu Rongtai, Shen Yaqun, Ren Hongqiang. Ammonium removal from simulated wastewater by struvite crystallization technology[J]. Chinese Journal of Environmental Engineering, 2015, 9(10): 4627-4631. doi: 10.12030/j.cjee.20151003

磷酸铵镁结晶技术处理模拟氨氮废水

  • 基金项目:

    国家自然科学基金面上项目(51178216)

    景德镇市科技局项目(104170301)

  • 中图分类号: X703

Ammonium removal from simulated wastewater by struvite crystallization technology

  • Fund Project:
  • 摘要: 从工程应用角度出发,考察了不同氨氮起始浓度、反应温度、搅拌速率及搅拌时间对磷酸铵镁化学结晶技术沉氨效果的影响。研究结果表明,当氨氮起始浓度超过200 mg/L时,氨氮去除率达到90%以上。不同温度条件下,氨氮去除率超过80%。随着温度升高,氨氮去除率明显上升,最高可达90%以上。搅拌是晶粒生长的一个重要影响因素;搅拌速率对晶粒生长作用复杂,当搅拌速率低于150 r/min时,加速了晶粒生长,达2.25 nm;提高搅拌速率,晶粒大小降至1.54 nm。而搅拌时间对晶粒生长起着非常明显的促进作用;随着搅拌时间的延长,晶粒出现明显的增长,从5 min的0.47 nm长至120 min的1.71 nm。
  • 加载中
  • [1] 吴彦瑜, 彭晓春, 陈志良, 等. MAP沉淀法去除渗滤液中低浓度氨氮. 环境工程学报, 2013, 7(3): 925-930 Wu Yangyu, Peng Xiaochun, Chen Zhiliang, et al. Treatment of low concentration ammonium nitrogen in landfill leachate with MAP precipitation. Chinese Journal of Environmental Engineering, 2013, 7(3), 925-930(in Chinese)
    [2] 王国文, 王栋, 王明明, 等. 重金属杂质对磷酸铵镁结晶法处理制药废水的影响. 环境工程学报, 2013, 7(12): 4866-4868 Wang Guowen, Wang Dong, Wang Mingming, et al. Effect of heavy metal impurities on struvite precipitation for treatment of pharmaceutical wastewater. Chinese Journal of Environmental Engineering, 2013, 7(12): 4866-4868(in Chinese)
    [3] Zhang Tao, Ding Lili, Ren Hongqiang, et al. Ammonium nitrogen removal from coking wastewater by chemical precipitation recycle technology. Water Research, 2009, 43(20): 5209-5215
    [4] He Shilong, Zhang Yu, Yang Min, et al. Repeated use of MAP decomposition residues for the removal of high ammonium concentration from landfill leachate. Chemosphere, 2007, 66(11): 2233-2238
    [5] Kim D., Kim J., Ryu H.D., et al. Effect of mixing on spontaneous struvite precipitation from semiconductor wastewater. Bioresource Technology, 2009, 100(1): 74-78
    [6] Pakdil N. B., Filibeli A. The evaluation of pumice stone applicability at struvite crystallization by using box-benhken experimental design. Journal of Residuals Science and Technology, 2008, 5(2): 95-102
    [7] Liu Zhigang, Zhao Qingliang, Lee D.J., et al. Enhancing phosphorus recovery by a new internal recycle seeding MAP reactor. Bioresource Technology, 2008, 99(14): 6488-6493
    [8] Kim E.H., Yim S.B., Jung H. C., et al. Hydroxyapatite crystallization from a highly concentrated phosphate solution using powdered converter slag as a seed material. Journal of Hazardous Materials, 2006, 136(3): 690-697
    [9] Ohlinger K. N., Young T. M., Schroeder E. D. Postdigestion struvite precipitation using a fluidized bed reactor. Journal of Environmental Engineering, 2000, 126(4): 361-368
    [10] Wu Qingzhong, Bishop P. L. Enhancing struvite crystallization from anaerobic supernatant. Journal of Environmental Engineering and Science, 2004, 3(1): 21-29
    [11] Shimamura K., Tanaka T., Miura Y., et al. Development of a high-efficiency phosphorus recovery method using a fluidized-bed crystallized phosphorus removal system. Water Science and Technology, 2003, 48(1): 163-170
    [12] Battistoni P., Boccadoro R., Fatone F., et al. Auto-nucleation and crystal growth of struvite in a demonstrative fluidized bed reactor (FBR). Environmental Technology, 2005, 26(9): 975-982
    [13] Battistoni P., Fava G., Pavan P., et al. Phosphate removal in anaerobic liquors by struvite crystallization without addition of chemicals: Preliminary results. Water Research, 1997, 31(11): 2925-2929
    [14] Ohlinger K. N., Young T. M., Schroeder E. D. Kinetics effects on preferential struvite accumulation in wastewater. Journal of Environmental Engineering, 1999, 125(8): 730-737
  • 加载中
计量
  • 文章访问数:  1859
  • HTML全文浏览数:  1315
  • PDF下载数:  521
  • 施引文献:  0
出版历程
  • 收稿日期:  2014-08-05
  • 刊出日期:  2015-10-14

磷酸铵镁结晶技术处理模拟氨氮废水

  • 1.  景德镇陶瓷学院 材料科学与工程学院, 景德镇 333001
  • 2.  南京大学 污染控制与资源化研究国家重点实验室, 南京 210023
基金项目:

国家自然科学基金面上项目(51178216)

景德镇市科技局项目(104170301)

摘要: 从工程应用角度出发,考察了不同氨氮起始浓度、反应温度、搅拌速率及搅拌时间对磷酸铵镁化学结晶技术沉氨效果的影响。研究结果表明,当氨氮起始浓度超过200 mg/L时,氨氮去除率达到90%以上。不同温度条件下,氨氮去除率超过80%。随着温度升高,氨氮去除率明显上升,最高可达90%以上。搅拌是晶粒生长的一个重要影响因素;搅拌速率对晶粒生长作用复杂,当搅拌速率低于150 r/min时,加速了晶粒生长,达2.25 nm;提高搅拌速率,晶粒大小降至1.54 nm。而搅拌时间对晶粒生长起着非常明显的促进作用;随着搅拌时间的延长,晶粒出现明显的增长,从5 min的0.47 nm长至120 min的1.71 nm。

English Abstract

参考文献 (14)

目录

/

返回文章
返回