掺铁碳羟基磷灰石复合物对铅离子废水的吸附

曾荣英, 罗春香, 龚道新, 唐文清, 冯泳兰, 彭刚. 掺铁碳羟基磷灰石复合物对铅离子废水的吸附[J]. 环境工程学报, 2015, 9(10): 4643-4649. doi: 10.12030/j.cjee.20151006
引用本文: 曾荣英, 罗春香, 龚道新, 唐文清, 冯泳兰, 彭刚. 掺铁碳羟基磷灰石复合物对铅离子废水的吸附[J]. 环境工程学报, 2015, 9(10): 4643-4649. doi: 10.12030/j.cjee.20151006
Zeng Rongying, Luo Chunxiang, Gong Daoxing, Tang Wenqing, Feng Yonglan, Peng Gang. Adsorption of Pb(II) from aqueous solution using nano-ferriferrous oxide/carbonate hydroxyapatite composite[J]. Chinese Journal of Environmental Engineering, 2015, 9(10): 4643-4649. doi: 10.12030/j.cjee.20151006
Citation: Zeng Rongying, Luo Chunxiang, Gong Daoxing, Tang Wenqing, Feng Yonglan, Peng Gang. Adsorption of Pb(II) from aqueous solution using nano-ferriferrous oxide/carbonate hydroxyapatite composite[J]. Chinese Journal of Environmental Engineering, 2015, 9(10): 4643-4649. doi: 10.12030/j.cjee.20151006

掺铁碳羟基磷灰石复合物对铅离子废水的吸附

  • 基金项目:

    湖南省自然科学基金资助项目(13JJ9018)

    湖南省重点建设学科资助

  • 中图分类号: X703.1

Adsorption of Pb(II) from aqueous solution using nano-ferriferrous oxide/carbonate hydroxyapatite composite

  • Fund Project:
  • 摘要: 采用废弃蛋壳和自制纳米Fe3O4为原材料,采用水热法制备Fe3O4/碳羟基磷灰石复合物(简称掺铁碳羟基磷灰石复合物,Fe-CHAP),将其用于吸附含Pb2+废水。通过BET比表面积、FTIR和XRD等表征手段对样品进行测试,分别探讨了影响吸附性能的主要因素,如pH、吸附剂用量、吸附时间、Pb2+初始浓度以及反应温度等。研究结果表明,在pH=5.0、0.03 g Fe-CHAP、150 mg/L Pb2+初始浓度、作用时间45 min和反应温度323 K等优化条件下,Fe-CHAP对Pb2+的去除率和吸附容量分别为98.59%和492.95mg/g。Langmuir等温模型较好地拟合了吸附实验数据,相关系数高达0.99,饱和吸附容量高达1 111.11 mg/g;准二级动力学模型较好地描述该吸附行为,相关系数高达0.999;热力学参数ΔG、ΔH和ΔS的计算值显示该吸附过程为自发吸热过程。
  • 加载中
  • [1] Arshadi M., Soleymanzadeh M., Salvacion J. W. L., et al. Nanoscale Zero-Valent Iron (NZVI) supported on sineguelas waste for Pb(II) removal from aqueous solution: Kinetics, thermodynamic and mechanism. Journal of Colloid and Interface Science, 2014, 426: 241-251
    [2] Luo Shenglian, Xu Xiangli, Zhou Guiyin, et al. Amino siloxane oligomer-linked graphene oxide as an efficient adsorbent for removal of Pb (II) from wastewater. Journal of Hazardous Materials, 2014, 274: 145-155
    [3] Hosseini-Bandegharaei A., Karimzadeh M., Sarwghadi M., et al. Use of a selective extractant-impregnated resin for removal of Pb(II) ion from waters and wastewaters: Kinetics, equilibrium and thermodynamic study. Chemical Engineering Research and Design, 2014, 92(3): 581-591
    [4] Zhao Qingchun, Ren Lin, Zhou Haiou, et al. Enhanced adsorption of Pb(II) by Al(OH)3/(PAA-CO-PAM) sub-microspheres with three-dimensional interpenetrating network structure. Chemical Engineering Journal, 2014, 250: 6-13
    [5] Jamshidi Gohari R., Lau W. J., Matsuura T., et al. Adsorptive removal of Pb(II) from aqueous solution by novel PES/HMO ultrafiltration mixed matrixmembrane. Separation and Purification Technology, 2013, 120: 59-68
    [6] Yan Yubo, Dong Xiaoli, Sun Xiaolei, et al. Conversion of waste FGD gypsum into hydroxyapatite for removal of Pb2+ and Cd2+ from wastewater. Journal of Colloid and Interface Science, 2014, 429: 68-76
    [7] Aliabadi M., Irani M., Ismaeili J., et al. Design and evaluation of chitosan/hydroxyapatite composite nanofiber membrane for the removal of heavy metal ions from aqueous solution. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45(2): 518-526
    [8] Sahu M. K., Mandal S., Dash S. S, et al. Removal of Pb(II) from aqueous solution by acid activated red mud. Journal of Environment Chemical Engineering, 2013, 1(4): 1315-1324
    [9] Ghasemi M., Naushad M., Ghasemi N., et al. Adsorption of Pb (II) from aqueous solution using new adsorbents prepared from agricultural waste: Adsorption isotherm and kinetic studies. Journal of Industrial and Engineering Chemistry, 2014, 20(4): 2193-2199
    [10] Liu Dagang, Li Zehui, Zhu Yi, et al. Recycled chitosan nanofibril as an effective Cu(II), Pb (II) and Cd(II) ionic chelating agent: Adsorption and desorption performance. Carbohydrate Polymers, 2014, 111: 469-476
    [11] Cao Fujun, Yin Ping, Zhang Jiang, et al. Nanoplates of cobalt phosphonate with two-dimensional structure and its competitive adsorption of Pb(II) and Hg(II) ions from aqueous solutions. Journal of Industrial and Engineering Chemistry, 2014, 20(4): 2568-2573
    [12] Jiang Tianyu, Xu Renkou, Gu Tianxia, et al. Effect of Crop-straw derived biochars on Pb (II) adsorption in two variable charge soils. Journal of Integrative Agriculture, 2014, 13(3): 507-516
    [13] He Manchao, Zhao Jian, Wang Shuangxi. Adsorption and diffusion of Pb (II) on the kaolinite (001) surface: A density-functional theory study. Applied Clay Science, 2013, 85: 74-79
    [14] Cui Limei, Xu Weiying, Guo Xiaoyao, et al. Synthesis of strontium hydroxyapatite embedding ferroferric oxide nano-composite and its application in Pb2+ adsorption. Journal of Molecular Liquids, 2014, 197: 40-47
    [15] He Mao, Shi Hui, Zhao Xinyue, et al. Immobilization of Pb and Cd in Contaminated Soil Using Nano-Crystallite Hydroxyapatite. Procedia Environmental Sciences, 2013, 18: 657-665
    [16] Xu Huanyan, Yang Lei, Wang Peng, et al. Kinetic research on the sorption of aqueous lead by synthetic carbonate hydroxyapatite. Journal of Environmental Management, 2008, 86(1): 319-328
    [17] Safavi A., Momeni S. Highly efficient degradation of azo dyes by palladium/hydroxyapatite/Fe3O4 nanocatalyst. Journal of Hazardous Materials, 2012, 201-202: 125-131
    [18] 唐文清, 曾荣英, 冯泳兰, 等. 合成碳羟基磷灰石对水中双酚A的吸附性能研究. 环境工程学报, 2009, 3(11): 1961-1964 Tang Wengqing, Zeng Rongying, Feng Yonglan, et al. Study on adsorption characteristic of carbonate hydroxylapatite for biphenol-A from aqueous solution. Chinese Journal of Environmental Engineering, 2009, 3(11): 1961-1964(in Chinese)
    [19] 唐文清, 曾荣英, 李小明, 等. 合成碳羟基磷灰石对水中苯胺的吸附机理. 硅酸盐学报, 2010, 38(11): 2167-2171 Tang Wenqing, Zeng Rongying, Li Xiaoming, et al. Adsorption characteristic of carbonate hydroxylapatite for aniline from aqueous solution. Journal of the Chinese Ceramic Society, 2010, 38(11): 2167-2171(in Chinese)
    [20] Li Songnan, Bai Hongbin, Wang Jun, et al. In situ grown of nano-hydroxyapatite on magnetic CaAl-layered double hydroxides and its application in uranium removal. Chemical Engineering Journal, 2012, 193-194: 372-380
    [21] Salah T. A., Mohammad A. M., Hassan M. A., et al. Development of nano-hydroxyapatite/chitosan composite for cadmium ions removal in wastewater treatment. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45(4): 1571-1577
    [22] Bazargan-Lari R., Zafarani H. R., Bahrololoom M. E., et al. Removal of Cu(II) ions from aqueous solutions by low-cost natural hydroxyapatite/chitosan composite: Equilibrium, kinetic and thermodynamic studies. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45(4): 1642-1648
    [23] Kong Jiaojiao, Yue Qinyan, Sun Shenglei, et al. Adsorption of Pb (II) from aqueous solution using keratin waste-hide waste: Equilibrium, kinetic and thermodynamic modeling studies. Chemical Engineering Journal, 2014, 241: 393-400
    [24] Boroumand Jazi M., Arshadi M., Amiri M. J., et al. Kinetic and thermodynamic investigations of Pb(II) and Cd(II) adsorption on nanoscale organo-functionalized SiO2-Al2O3. Journal of Colloid and Interface Science, 2014, 422: 16-24
    [25] Wei Wei, Sun Rong, Jin Zhu, et al. Hydroxyapatite-gelatin nanocomposite as a novel adsorbent for nitrobenzene removal from aqueous solution. Applied Surface Science, 2014, 292: 1020-1029
  • 加载中
计量
  • 文章访问数:  1334
  • HTML全文浏览数:  1007
  • PDF下载数:  1015
  • 施引文献:  0
出版历程
  • 收稿日期:  2014-08-04
  • 刊出日期:  2015-10-14

掺铁碳羟基磷灰石复合物对铅离子废水的吸附

  • 1.  湖南农业大学资源环境学院, 长沙 410128
  • 2.  衡阳师范学院化学与材料科学系, 衡阳 421008
  • 3.  功能金属有机材料湖南省普通高等学校重点实验室, 衡阳 421008
基金项目:

湖南省自然科学基金资助项目(13JJ9018)

湖南省重点建设学科资助

摘要: 采用废弃蛋壳和自制纳米Fe3O4为原材料,采用水热法制备Fe3O4/碳羟基磷灰石复合物(简称掺铁碳羟基磷灰石复合物,Fe-CHAP),将其用于吸附含Pb2+废水。通过BET比表面积、FTIR和XRD等表征手段对样品进行测试,分别探讨了影响吸附性能的主要因素,如pH、吸附剂用量、吸附时间、Pb2+初始浓度以及反应温度等。研究结果表明,在pH=5.0、0.03 g Fe-CHAP、150 mg/L Pb2+初始浓度、作用时间45 min和反应温度323 K等优化条件下,Fe-CHAP对Pb2+的去除率和吸附容量分别为98.59%和492.95mg/g。Langmuir等温模型较好地拟合了吸附实验数据,相关系数高达0.99,饱和吸附容量高达1 111.11 mg/g;准二级动力学模型较好地描述该吸附行为,相关系数高达0.999;热力学参数ΔG、ΔH和ΔS的计算值显示该吸附过程为自发吸热过程。

English Abstract

参考文献 (25)

目录

/

返回文章
返回