铁碳微电解预处理强酸高盐印染中间体废水

乔鹏, 张毅, 黄天寅, 张后虎, 刘锋, 路逸居. 铁碳微电解预处理强酸高盐印染中间体废水[J]. 环境工程学报, 2015, 9(10): 4717-4723. doi: 10.12030/j.cjee.20151016
引用本文: 乔鹏, 张毅, 黄天寅, 张后虎, 刘锋, 路逸居. 铁碳微电解预处理强酸高盐印染中间体废水[J]. 环境工程学报, 2015, 9(10): 4717-4723. doi: 10.12030/j.cjee.20151016
Qiao Peng, Zhang Yi, Huang Tianyin, Zhang Houhu, Liu Feng, Lu Yiju. Pretreatment of strongly acidic and highly saline dyeing intermediate wastewater by Fe/C micro-electrolysis method[J]. Chinese Journal of Environmental Engineering, 2015, 9(10): 4717-4723. doi: 10.12030/j.cjee.20151016
Citation: Qiao Peng, Zhang Yi, Huang Tianyin, Zhang Houhu, Liu Feng, Lu Yiju. Pretreatment of strongly acidic and highly saline dyeing intermediate wastewater by Fe/C micro-electrolysis method[J]. Chinese Journal of Environmental Engineering, 2015, 9(10): 4717-4723. doi: 10.12030/j.cjee.20151016

铁碳微电解预处理强酸高盐印染中间体废水

  • 基金项目:

    国家"水体污染控制与治理"科技重大专项(2012ZX07103-002)

    国家自然科学基金-面上项目(41375161)

  • 中图分类号: X703

Pretreatment of strongly acidic and highly saline dyeing intermediate wastewater by Fe/C micro-electrolysis method

  • Fund Project:
  • 摘要: 针对某工业园区混合类化工废水高色度、强酸性、高盐分和难降解且成分复杂的特点,采用以铁碳微电解技术对该混合类化工废水进行预处理。通过正交实验分析得出各因素对微电解出水处理效果的影响程度顺序分别为:铁炭形式>搅拌强度>反应时间。正交实验和单因素实验的结果表明,微电解实验水平中的最佳运行条件为:铁炭形式为铁炭混合填料、搅拌强度为350 r/min、反应时间为6 h、铁炭比为3:1、铁炭总投加量为192 g/L。在优化的运行条件下,出水的色度和COD的去除率分别达到36.0%和22.9%。同时,废水的可生化性也有很大提高,B/C提高了44.4%。
  • 加载中
  • [1] 杨海军, 周律. 印染废水的深度处理和有效回用探讨.第八届全国印染行业四新会论文集. 上海: 中国印染行业协会, 2009 Yang Haijun, Zhou Lv. Advanced treatment and reuse of textile wastewater.Four New Proceedings of the Eighth National Printing and Dyeing Industry. Shanghai: China Association of Printing and Dyeing Industry, 2009 (in Chinese)
    [2] 杨蕴敏. 关于印染废水的回用问题. 上海纺织科技, 2007, 35(12): 3-4, 7 Yang Yunmin. Discussion on the reuse of dyeing and printing wastewater. Shanghai Textile Science & Technology, 2007, 35(12): 3-4, 7 (in Chinese)
    [3] Huang Lihui, Sun Guopeng, Yang Tao, et al. A preliminary study of anaerobic treatment coupled with micro-electrolysis for anthraquinone dye wastewater. Desalination, 2013, 309: 91-96
    [4] 张守健, 张岩, 孙继龙, 等. 预处理/UASB/MBR工艺处理萘系染料中间体废水. 中国给水排水, 2011, 27(2): 50-54 Zhang Shoujian, Zhang Yan, Sun Jilong, et al. Pretreatment/UASB/MBR process for treatment of naphthalene series dye intermediate wastewater. China Water & Wastewater, 2011, 27(2): 50-54 (in Chinese)
    [5] 张宇峰, 滕洁, 张雪英, 等. 印染废水处理技术的研究进展. 工业水处理, 2003, 23(4): 23-27 Zhang Yufeng, Teng Jie, Zhang Xueying, et al. Progress of the researches on dyeing wastewater treatment techniques. Industrial Water Treatment, 2003, 23(4): 23-27 (in Chinese)
    [6] 袁秋生, 倪广乐, 张爱勇. 悬浮型光催化纳滤膜反应器对染料中间体H酸溶液的降解. 中国环境科学, 2014, 34(3): 658-663 Yuan Qiusheng, Ni Guangle, Zhang Aiyong. Degradation behaviors of H-acid solution in suspended photocatalytic nanofiltration membrane reactor. China Environmental Science, 2014, 34(3): 658-663 (in Chinese)
    [7] 龚雪君, 陈晓蓉, 梅华. Ni2O3/AC催化剂催化氧化蒽醌染料中间体废水研究. 环境科学与技术, 2013, 36(12): 117-121 Gong Xuejun, Chen Xiaorong, Mei Hua. Catalytic oxidation of Ni2O3/AC catalysts for degradation of anthraquinone dye intermediate. Environmental Science & Technology, 2013, 36(12): 117-121 (in Chinese)
    [8] 孙文全, 陆曦. 医药与染料中间体生产废水处理工程实例. 水处理技术, 2011, 37(8): 130-132 Sun Wenquan, Lu Xi. Practice and study on treatment of medicine & dye intermediate wastewater. Technology of Water Treatment, 2011, 37(8): 130-132 (in Chinese)
    [9] 孟庆华, 代娟, 朱亦仁, 等. 纳米CuO在染料中间体间氯甲苯工业废水处理中的应用. 环境工程学报, 2011, 5(10): 2261-2266 Meng Qinghua, Dai Juan, Zhu Yiren, et al. Application of CuO nanoparticle in treating wastewater of dye intermediate m-chlorotoluene. Chinese Journal of Environmental Engineering, 2011, 5(10): 2261-2266 (in Chinese)
    [10] 范先媛, 周志辉, 余微, 等. 类Fenton氧化-絮凝耦合处理染料中间体废水. 工业水处理, 2011, 31(5): 49-52 Fan Xianyuan, Zhou Zhihui, Yu Wei, et al. Treatment of dye intermediate wastewater by Fenton-like oxidation-flocculation coupling process. Industrial Water Treatment, 2011, 31(5): 49-52 (in Chinese)
    [11] Ruan Xinchao, Liu Mingyue, Zeng Qingfu, et al. Degradation and decolorization of reactive red X-3B aqueous solution by ozone integrated with internal micro-electrolysis. Separation and Purification Technology, 2010, 74(2): 195-201
    [12] Zhou Haimei, Shen Yuanyuan, Lü Ping, et al. Degradation of 1-butyl-3-methylimidazolium chloride ionic liquid by ultrasound and zero-valent iron/activated carbon. Separation and Purification Technology, 2013, 104: 208-213
    [13] 付丽丽, 周思彤, 祝雷. 微电解-絮凝预处理含油乳化废水的实验研究. 工业水处理, 2014, 34(4): 44-46 Fu Lili. Zhou Sitong, Zhu Lei. Experimental research on the pretreatment of oil-bearing emulsion wastewater by micro-electrolysis-flocculation. Industrial Water Treatment, 2014, 34(4): 44-46 (in Chinese)
    [14] 黄萌萌, 买文宁, 李海松. 铁炭微电解-Fe2+/K2S2O8降解甲基橙. 环境工程学报, 2014, 8(3): 935-940 Huang Mengmeng, Mai Wenning, Li Haisong. Degradation of methyl orange by iron carbon micro-electrolysis-Fe2+/K2S2O8 . Chinese Journal of Environmental Engineering, 2014, 8(3): 935-940 (in Chinese)
    [15] Oh S. Y., Chiu P. C., Kim B. J., et al. Zero-valent iron pretreatment for enhancing the biodegradability of RDX. Water Research, 2005, 39(20): 5027-5032
    [16] Ghauch A. Degradation of benomyl, picloram, and dicamba in a conical apparatus by zero-valent iron powder. Chemosphere, 2001, 43(8): 1109-1117
    [17] Keum Y. S., Li Q. X. Reduction of nitroaromatic pesticides with zero-valent iron. Chemosphere, 2004, 54(3): 255-263
    [18] 鲁风芹, 于江波, 孙文. 铁碳微电解深度处理橡胶工业废水的试验研究. 工业用水与废水, 2011, 42(2): 33-35 Lu Fengqin, Yu Jiangbo, Sun Wen. Advanced treatment of wastewater from rubber industry by ironcarbon microelectrolysis. Industrial Water & Wastewater, 2011, 42(2): 33-35 (in Chinese)
    [19] Lai Bo, Zhou Yuexi, Yang Ping, et al. Degradation of 3, 3'-iminobis-propanenitrile in aqueous solution by Fe0/GAC micro-electrolysis system. Chemosphere, 2013, 90(4): 1470-1477
    [20] 李天鹏, 荆国华, 周作明. 微电解技术处理工业废水的研究进展及应用. 工业水处理, 2009, 29(10): 9-13 Li Tianpeng, Jing Guohua, Zhou Zuoming. Research on micro-electrolysis technology and its application to industrial wastewater treatment. Industrial Water Treatment, 2009, 29(10): 9-13 (in Chinese)
    [21] 宿程远, 韦金尚, 陈孟林, 等. 增强型内电解-H2O2催化氧化处理染料废水研究. 水处理技术, 2011, 37(7): 61-64, 77 Su Chengyuan, Wei Jinshang, Chen Menglin, et al. Study on the treatment of dye waste water by catalytic oxidation of intensive inner electrolysis and hydrogen peroxide oxidation adding. Technology of Water Treatment, 2011, 37(7): 61-64, 77 (in Chinese)
    [22] 孙必鑫. 生物法/催化铁内电解法工艺处理精细化工废水的研究. 上海: 同济大学硕士学位论文, 2007 Sun Bixin. Study on biological process-catalyzed iron inner electrolysis process for treating fine chemical wastewater. Shanghai: Master Dissertation of Tongji University, 2007 (in Chinese)
    [23] 赖咸蛟. 微电解-电Fenton联合预处理污泥脱除液的研究. 哈尔滨: 哈尔滨工业大学硕士学位论文, 2010 Lai Xianjiao. The pretreatment research of sludge removal liquid by micro-electrolysis united electro-Fenton. Harbin: Master Dissertation of Harbin Institute of Technology, 2010 (in Chinese)
    [24] 国家环境保护总局. 水和废水监测分析方法(第4版). 北京: 中国环境科学出版社, 2002
    [25] 李贞玉, 阮望, 李长海, 等. 混凝沉淀-微电解预处理再生造纸废水实验研究. 水处理技术, 2014, 40(3): 80-83 Li Zhenyu, Ruan Wang, Li Changhai, et al. Study on pretreatment of regenerated papermaking wastewater with coagulation-micro-electrolysis process. Technology of Water Treatment, 2014, 40(3): 80-83 (in Chinese)
    [26] 荣少鹏, 孙亚兵, 赵泽华, 等. 铁炭微电解法降解TAIC废水. 环境工程学报, 2013, 7(2): 4847-4853 Rong Shaopeng, Sun Yabing, Zhao Zehua, et al. Degradation of TAIC by iron-carbon micro-electrolysis. Chinese Journal of Environmental Engineering, 2013, 7(2): 4847-4853 (in Chinese)
    [27] 赖鹏, 赵华章, 王超, 等. 铁炭微电解深度处理焦化废水的研究. 环境工程学报, 2007, 1(3): 15-20 Lai Peng, Zhao Huazhang, Wang Chao, et al. Study on advanced treatment of coking wastewater by iron-carbon micro-electrolysis process. Chinese Journal of Environmental Engineering, 2007, 1(3): 15-20 (in Chinese)
  • 加载中
计量
  • 文章访问数:  1665
  • HTML全文浏览数:  1089
  • PDF下载数:  470
  • 施引文献:  0
出版历程
  • 收稿日期:  2014-08-21
  • 刊出日期:  2015-10-14

铁碳微电解预处理强酸高盐印染中间体废水

  • 1.  苏州科技学院环境科学与工程学院, 苏州 215009
  • 2.  环境保护部南京环境科学研究所, 南京 210042
  • 3.  中国核工业华兴建设有限公司, 南京 210019
基金项目:

国家"水体污染控制与治理"科技重大专项(2012ZX07103-002)

国家自然科学基金-面上项目(41375161)

摘要: 针对某工业园区混合类化工废水高色度、强酸性、高盐分和难降解且成分复杂的特点,采用以铁碳微电解技术对该混合类化工废水进行预处理。通过正交实验分析得出各因素对微电解出水处理效果的影响程度顺序分别为:铁炭形式>搅拌强度>反应时间。正交实验和单因素实验的结果表明,微电解实验水平中的最佳运行条件为:铁炭形式为铁炭混合填料、搅拌强度为350 r/min、反应时间为6 h、铁炭比为3:1、铁炭总投加量为192 g/L。在优化的运行条件下,出水的色度和COD的去除率分别达到36.0%和22.9%。同时,废水的可生化性也有很大提高,B/C提高了44.4%。

English Abstract

参考文献 (27)

目录

/

返回文章
返回