[1]
|
Sayilgan E., Kukrer T., Civelekoglu G., et al. A review of technologies for the recovery of metals from spent alkaline and zinc-carbon batteries. Hydrometallurgy, 2009, 97(3-4): 158-166
|
[2]
|
Li Yunqing, Xi Guoxi. The dissolution mechanism of cathodic active materials of spent Zn-Mn batteries in HCl. Journal of Hazardous Materials, 2005, 127(1-3): 244-248
|
[3]
|
Bernardes A. M., Espinosa D. C. R., Tenório J. A. S. Recycling of batteries: A review of current processes and technologies. Journal of Power Sources, 2004, 130(1-2): 291-298
|
[4]
|
Shin S. M., Senanayake G., Sohn J.S., et al. Separation of zinc from spent zinc-carbon batteries by selective leaching with sodium hydroxide. Hydrometallurgy, 2009, 96(4): 349-353
|
[5]
|
Sayilgan E., Kukrer T., Yigit N. O., et al. Acidic leaching and precipitation of zinc and manganese from spent battery powders using various reductants. Journal of Hazardous Materials, 2010, 173(1-3): 137-143
|
[6]
|
Belardi G., Lavecchia R., Medici F., et al. Thermal treatment for recovery of manganese and zinc from zinc-carbon and alkaline spent batteries. Waste Management, 2012, 32(10): 1945-1951
|
[7]
|
Buzatu T., Popescu G., Birloaga I., et al. Study concerning the recovery of zinc and manganese from spent batteries by hydrometallurgical processes. Waste Management, 2013, 33(3): 699-705
|
[8]
|
Nan Junmin, Han Dongmei, Cui Ming, et al. Recycling spent zinc manganese dioxide batteries through synthesizing Zn-Mn ferrite magnetic materials. Journal of Hazardous Materials, 2006, 133(1-3): 257-261
|
[9]
|
Xin Baoping, Huang Qun, Chen Shi. High-purity nano particles ZnS production by a simple coupling reaction process of biological reduction and chemical precipitation mediated with EDTA. Biotechnology Progress, 2008, 24(5): 1171-1177
|
[10]
|
Gabal M. A., Al-Luhaibi R. S., Al Angari Y. M. Mn-Zn nano-crystalline ferrites synthesized from spent Zn-C batteries using novel gelatin method. Journal of Hazardous Materials, 2013, 246-247: 227-233
|
[11]
|
Rossi G. Biohydrometallurgy. Hamburg: McGraw-Hill, 1990
|
[12]
|
Tyagi R. D., Blais J. F., Auclair J. C. Bacterial leaching of metals from digested sewage sludge by indigenous iron-oxidizing bacteria. Environmental Pollution, 1993, 82(1): 9-12
|
[13]
|
Veglió F., Beolchini F., Nardini A., et al. Kinetic analysis of pyrrhotite ore bioleaching by a sulfooxidans strain: Direct and indirect mechanism discrimination. Process Metallurgy, 1999, 9: 607-616
|
[14]
|
Zhao Ling, Zhu Nanwen, Wang Xiaohui, Comparison of bio-dissolution of spent Ni-Cd batteries by sewage sludge using ferrous ions and elemental sulfur as substrate. Chemosphere, 2008, 70(6): 974-981
|
[15]
|
Zhu Nanwen, Zhang Lehua, Li Chunjie, et al. Recycling of spent nickel-cadmium batteries based on bioleaching process. Waste Management, 2003, 23(8): 703-708
|
[16]
|
Cerruti C., Curutchet G., Donati E.Bio-dissolution of spent nickel-cadmium batteries using Thiobacillus ferrooxidans. Journal of Biotechnology, 1998, 62(3): 209-219
|
[17]
|
Niu Zhirui, Zou Yikan, Xin Baoping, et al. Process controls for improving bioleaching performance of both Li and Co from spent lithium ion batteries at high pulp density and its thermodynamics and kinetics exploration. Chemosphere, 2014, 109: 92-98
|
[18]
|
Xin Baoping, Jiang Wenfeng, Aslam H., et al. Bioleaching of zinc and manganese from spent Zn-Mn batteries and mechanism exploration. Bioresource Technology, 2012, 106: 147-153
|
[19]
|
Almeida M. F., Xará S. M., Delgado J., et al. Characterization of spent AA household alkaline batteries. Waste Management, 2006, 26(5): 466-476
|
[20]
|
Belardi G., Ballirano P., Ferrini M., et al. Characterization of spent zinc-carbon and alkaline batteries by SEM-EDS, TGA/DTA and XRPD analysis. Thermochimica Acta, 2011, 526(1-2): 169-177
|
[21]
|
Al-Harahsheh M., Kingman S. W. Microwave-assisted leaching:A review. Hydrometallurgy, 2004, 73(3-4): 189-203
|
[22]
|
Kingman S. W. Recent developments in microwave processing of minerals. International Materials Reviews, 2006, 51(1): 1-12
|
[23]
|
Olubambi P. A., Potgieter J. H., Hwang J. Y., et al. Influence of microwave heating on the processing and dissolution behaviour of low-grade complex sulphide ores. Hydrometallurgy, 2007, 89(1-2): 127-135
|
[24]
|
Mishra D., Kim D. J., Ralph D. E., et al. Bioleaching of spent hydro-processing catalyst using acidophilic bacteria and its kinetics aspect. Journal of Hazardous Materials, 2008, 152(3): 1082-1091
|