微波辅助生物淋滤废旧碱性电池锌锰的溶出

牛志睿, 辛宝平, 庞康, 江明荣, 李卓珏, 赵姣姣, 张咪. 微波辅助生物淋滤废旧碱性电池锌锰的溶出[J]. 环境工程学报, 2015, 9(11): 5199-5205. doi: 10.12030/j.cjee.20151111
引用本文: 牛志睿, 辛宝平, 庞康, 江明荣, 李卓珏, 赵姣姣, 张咪. 微波辅助生物淋滤废旧碱性电池锌锰的溶出[J]. 环境工程学报, 2015, 9(11): 5199-5205. doi: 10.12030/j.cjee.20151111
Niu Zhirui, Xin Baoping, Pang Kang, Jiang Mingrong, Li Zhuojue, Zhao Jiaojiao, Zhang Mi. Microwave assisted dissolution efficiency of bioleaching of spent alkaline zinc manganese battery[J]. Chinese Journal of Environmental Engineering, 2015, 9(11): 5199-5205. doi: 10.12030/j.cjee.20151111
Citation: Niu Zhirui, Xin Baoping, Pang Kang, Jiang Mingrong, Li Zhuojue, Zhao Jiaojiao, Zhang Mi. Microwave assisted dissolution efficiency of bioleaching of spent alkaline zinc manganese battery[J]. Chinese Journal of Environmental Engineering, 2015, 9(11): 5199-5205. doi: 10.12030/j.cjee.20151111

微波辅助生物淋滤废旧碱性电池锌锰的溶出

  • 基金项目:

    国家自然科学基金资助项目(21277012)

    陕西省高水平大学专项资金项目(2013SXTS03)

    陕西省教育厅专项科研计划项目(15JK1825)

  • 中图分类号: X172

Microwave assisted dissolution efficiency of bioleaching of spent alkaline zinc manganese battery

  • Fund Project:
  • 摘要: 以氧化硫硫杆菌为淋滤菌株对废旧碱性电池电极材料中Zn、Mn进行生物淋滤,考察了生物淋滤、化学浸提和微波辅助处理对Zn、Mn浸出率的影响。实验结果表明,在能源底物单质硫浓度20 g/L、初始pH值1.0、淋滤培养温度35℃、固液比为1%条件下,经过9 d生物淋滤,微波辅助处理的生物淋滤体系Zn、Mn浸出率均达到49%左右,优于其他淋滤体系。溶出动力学研究表明,Zn的溶出动力学符合化学反应控制模型,Mn的溶出则表现较为复杂。此外,SEM-EDS、XRD分析可知,原样经过微波辐照,部分ZnMn2O4分解为MnO,促进了Mn的溶出。
  • 加载中
  • [1] Sayilgan E., Kukrer T., Civelekoglu G., et al. A review of technologies for the recovery of metals from spent alkaline and zinc-carbon batteries. Hydrometallurgy, 2009, 97(3-4): 158-166
    [2] Li Yunqing, Xi Guoxi. The dissolution mechanism of cathodic active materials of spent Zn-Mn batteries in HCl. Journal of Hazardous Materials, 2005, 127(1-3): 244-248
    [3] Bernardes A. M., Espinosa D. C. R., Tenório J. A. S. Recycling of batteries: A review of current processes and technologies. Journal of Power Sources, 2004, 130(1-2): 291-298
    [4] Shin S. M., Senanayake G., Sohn J.S., et al. Separation of zinc from spent zinc-carbon batteries by selective leaching with sodium hydroxide. Hydrometallurgy, 2009, 96(4): 349-353
    [5] Sayilgan E., Kukrer T., Yigit N. O., et al. Acidic leaching and precipitation of zinc and manganese from spent battery powders using various reductants. Journal of Hazardous Materials, 2010, 173(1-3): 137-143
    [6] Belardi G., Lavecchia R., Medici F., et al. Thermal treatment for recovery of manganese and zinc from zinc-carbon and alkaline spent batteries. Waste Management, 2012, 32(10): 1945-1951
    [7] Buzatu T., Popescu G., Birloaga I., et al. Study concerning the recovery of zinc and manganese from spent batteries by hydrometallurgical processes. Waste Management, 2013, 33(3): 699-705
    [8] Nan Junmin, Han Dongmei, Cui Ming, et al. Recycling spent zinc manganese dioxide batteries through synthesizing Zn-Mn ferrite magnetic materials. Journal of Hazardous Materials, 2006, 133(1-3): 257-261
    [9] Xin Baoping, Huang Qun, Chen Shi. High-purity nano particles ZnS production by a simple coupling reaction process of biological reduction and chemical precipitation mediated with EDTA. Biotechnology Progress, 2008, 24(5): 1171-1177
    [10] Gabal M. A., Al-Luhaibi R. S., Al Angari Y. M. Mn-Zn nano-crystalline ferrites synthesized from spent Zn-C batteries using novel gelatin method. Journal of Hazardous Materials, 2013, 246-247: 227-233
    [11] Rossi G. Biohydrometallurgy. Hamburg: McGraw-Hill, 1990
    [12] Tyagi R. D., Blais J. F., Auclair J. C. Bacterial leaching of metals from digested sewage sludge by indigenous iron-oxidizing bacteria. Environmental Pollution, 1993, 82(1): 9-12
    [13] Veglió F., Beolchini F., Nardini A., et al. Kinetic analysis of pyrrhotite ore bioleaching by a sulfooxidans strain: Direct and indirect mechanism discrimination. Process Metallurgy, 1999, 9: 607-616
    [14] Zhao Ling, Zhu Nanwen, Wang Xiaohui, Comparison of bio-dissolution of spent Ni-Cd batteries by sewage sludge using ferrous ions and elemental sulfur as substrate. Chemosphere, 2008, 70(6): 974-981
    [15] Zhu Nanwen, Zhang Lehua, Li Chunjie, et al. Recycling of spent nickel-cadmium batteries based on bioleaching process. Waste Management, 2003, 23(8): 703-708
    [16] Cerruti C., Curutchet G., Donati E.Bio-dissolution of spent nickel-cadmium batteries using Thiobacillus ferrooxidans. Journal of Biotechnology, 1998, 62(3): 209-219
    [17] Niu Zhirui, Zou Yikan, Xin Baoping, et al. Process controls for improving bioleaching performance of both Li and Co from spent lithium ion batteries at high pulp density and its thermodynamics and kinetics exploration. Chemosphere, 2014, 109: 92-98
    [18] Xin Baoping, Jiang Wenfeng, Aslam H., et al. Bioleaching of zinc and manganese from spent Zn-Mn batteries and mechanism exploration. Bioresource Technology, 2012, 106: 147-153
    [19] Almeida M. F., Xará S. M., Delgado J., et al. Characterization of spent AA household alkaline batteries. Waste Management, 2006, 26(5): 466-476
    [20] Belardi G., Ballirano P., Ferrini M., et al. Characterization of spent zinc-carbon and alkaline batteries by SEM-EDS, TGA/DTA and XRPD analysis. Thermochimica Acta, 2011, 526(1-2): 169-177
    [21] Al-Harahsheh M., Kingman S. W. Microwave-assisted leaching:A review. Hydrometallurgy, 2004, 73(3-4): 189-203
    [22] Kingman S. W. Recent developments in microwave processing of minerals. International Materials Reviews, 2006, 51(1): 1-12
    [23] Olubambi P. A., Potgieter J. H., Hwang J. Y., et al. Influence of microwave heating on the processing and dissolution behaviour of low-grade complex sulphide ores. Hydrometallurgy, 2007, 89(1-2): 127-135
    [24] Mishra D., Kim D. J., Ralph D. E., et al. Bioleaching of spent hydro-processing catalyst using acidophilic bacteria and its kinetics aspect. Journal of Hazardous Materials, 2008, 152(3): 1082-1091
  • 加载中
计量
  • 文章访问数:  1694
  • HTML全文浏览数:  1040
  • PDF下载数:  450
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-01-09
  • 刊出日期:  2015-11-18
牛志睿, 辛宝平, 庞康, 江明荣, 李卓珏, 赵姣姣, 张咪. 微波辅助生物淋滤废旧碱性电池锌锰的溶出[J]. 环境工程学报, 2015, 9(11): 5199-5205. doi: 10.12030/j.cjee.20151111
引用本文: 牛志睿, 辛宝平, 庞康, 江明荣, 李卓珏, 赵姣姣, 张咪. 微波辅助生物淋滤废旧碱性电池锌锰的溶出[J]. 环境工程学报, 2015, 9(11): 5199-5205. doi: 10.12030/j.cjee.20151111
Niu Zhirui, Xin Baoping, Pang Kang, Jiang Mingrong, Li Zhuojue, Zhao Jiaojiao, Zhang Mi. Microwave assisted dissolution efficiency of bioleaching of spent alkaline zinc manganese battery[J]. Chinese Journal of Environmental Engineering, 2015, 9(11): 5199-5205. doi: 10.12030/j.cjee.20151111
Citation: Niu Zhirui, Xin Baoping, Pang Kang, Jiang Mingrong, Li Zhuojue, Zhao Jiaojiao, Zhang Mi. Microwave assisted dissolution efficiency of bioleaching of spent alkaline zinc manganese battery[J]. Chinese Journal of Environmental Engineering, 2015, 9(11): 5199-5205. doi: 10.12030/j.cjee.20151111

微波辅助生物淋滤废旧碱性电池锌锰的溶出

  • 1.  延安大学石油工程与环境工程学院, 延安 716000
  • 2.  北京理工大学化工与环境学院, 北京 100081
基金项目:

国家自然科学基金资助项目(21277012)

陕西省高水平大学专项资金项目(2013SXTS03)

陕西省教育厅专项科研计划项目(15JK1825)

摘要: 以氧化硫硫杆菌为淋滤菌株对废旧碱性电池电极材料中Zn、Mn进行生物淋滤,考察了生物淋滤、化学浸提和微波辅助处理对Zn、Mn浸出率的影响。实验结果表明,在能源底物单质硫浓度20 g/L、初始pH值1.0、淋滤培养温度35℃、固液比为1%条件下,经过9 d生物淋滤,微波辅助处理的生物淋滤体系Zn、Mn浸出率均达到49%左右,优于其他淋滤体系。溶出动力学研究表明,Zn的溶出动力学符合化学反应控制模型,Mn的溶出则表现较为复杂。此外,SEM-EDS、XRD分析可知,原样经过微波辐照,部分ZnMn2O4分解为MnO,促进了Mn的溶出。

English Abstract

参考文献 (24)

返回顶部

目录

/

返回文章
返回