阳极石墨毡酸处理对微生物燃料电池型BOD传感器性能的影响

海冰寒, 张盼月, 王靖怡, 吕晓雪, 徐自明. 阳极石墨毡酸处理对微生物燃料电池型BOD传感器性能的影响[J]. 环境工程学报, 2016, 10(3): 1075-1080. doi: 10.12030/j.cjee.20160311
引用本文: 海冰寒, 张盼月, 王靖怡, 吕晓雪, 徐自明. 阳极石墨毡酸处理对微生物燃料电池型BOD传感器性能的影响[J]. 环境工程学报, 2016, 10(3): 1075-1080. doi: 10.12030/j.cjee.20160311
Hai Binghan, Zhang Panyue, Wang Jingyi, Lü Xiaoxue, Xu Ziming. Effect of nitric acid treatment of anode material on performances of microbial fuel cell-based BOD sensor[J]. Chinese Journal of Environmental Engineering, 2016, 10(3): 1075-1080. doi: 10.12030/j.cjee.20160311
Citation: Hai Binghan, Zhang Panyue, Wang Jingyi, Lü Xiaoxue, Xu Ziming. Effect of nitric acid treatment of anode material on performances of microbial fuel cell-based BOD sensor[J]. Chinese Journal of Environmental Engineering, 2016, 10(3): 1075-1080. doi: 10.12030/j.cjee.20160311

阳极石墨毡酸处理对微生物燃料电池型BOD传感器性能的影响

  • 基金项目:

    国家自然科学基金资助项目(51178047)

    国家级大学生创新创业训练项目(201310022070)

  • 中图分类号: X703

Effect of nitric acid treatment of anode material on performances of microbial fuel cell-based BOD sensor

  • Fund Project:
  • 摘要: 通过石墨毡表面润湿性的变化,确定了硝酸酸化处理石墨毡的操作条件。采用硝酸处理后的石墨毡作为电极材料,构建双室无介体微生物燃料电池(microbial fuel cell,MFC)型BOD传感器,并对BOD传感器的性能进行评价。结果表明,硝酸酸化处理明显提高石墨毡表面的润湿性,经过4 h酸化处理,石墨毡的表面接触角由142.5°下降到86.5°。采用硝酸处理的石墨毡作为电极材料,MFC的电流输出明显提高且稳定,在响应时间小于10 h条件下,废水BOD检测上限为100 mg/L。废水BOD浓度在2~50 mg/L范围内,可以利用BOD浓度与电流最大值之间的线性关系进行废水BOD浓度检测,废水BOD浓度在2~100 mg/L范围内,可以利用BOD浓度与电荷量之间的线性关系对废水BOD浓度进行检测,检测相对误差均在12%以下。MFC型BOD传感器运行稳定,相对标准偏差均在10%以下。
  • 加载中
  • [1] Tront J. M., Fortner J. D., Plötze M., et al. Microbial fuel cell biosensor for in situ assessment of microbial activity. Biosensors and Bioelectronics, 2008, 24(4):586-590
    [2] Kim B. H., Kim H. J., Hyun M. S., et al. Direct electrode reaction of Fe (III)-reducing bacterium Shewanella putrefaciens. Journal of Microbiology and Biotechnology, 1999, 9(2):127-131
    [3] Kim H. J., Park H. S., Hyun M. S., et al. A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme and Microbial Technology, 2002, 30(2):145-152
    [4] Kang K. H., Jang J. K., Pham T. H., et al. A microbial fuel cell with improved cathode reaction as a low biochemical oxygen demand sensor. Biotechnology Letters, 2003, 25(16):1357-1361
    [5] Kumlanghan A., Liu Jing, Thavarungkul P., et al. Microbial fuel cell-based biosensor for fast analysis of biodegradable organic matter. Biosensors and Bioelectronics, 2007, 22(12):2939-2944
    [6] Kim M., Youn S. M., Shin S. H., et al. Practical field application of a novel BOD monitoring system. Journal of Environmental Monitoring, 2003, 5(4):640-643
    [7] Moon H. S., Chang I. S., Jang J. K., et al. On-line monitoring of low biochemical oxygen demand through continuous operation of a mediator-less microbial fuel cell. Journal of Microbiology and Biotechnology, 2005, 15(1):192-196
    [8] Chang I. S., Moon H., Jang J. K., et al. Improvement of a microbial fuel cell performance as a BOD sensor using respiratory inhibitors. Biosensors and Bioelectronics, 2005, 20(9):1856-1859
    [9] Chang I. S., Jang J. K., Gil G. C., et al. Continuous determination of biochemical oxygen demand using microbial fuel cell type biosensor. Biosensors and Bioelectronics, 2004, 19(6):607-613
    [10] Kim B. H., Chang I. S., Gil G. C., et al. Novel BOD (biological oxygen demand) sensor using mediator-less microbial fuel cell. Biotechnology Letters, 2003, 25(7):541-545
    [11] Greenberg A. E. Standard Methods for the Examination of Water and Wastewater. 19th ed. Washington, DC:American Public Health Association, 1995
    [12] Park D., Zeikus J. Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens. Applied Microbiology and Biotechnology, 2002, 59(1):58-61
    [13] Pham T. H., Aelterman P., Verstraete W. Bioanode performance in bioelectrochemical systems:Recent improvements and prospects. Trends in Biotechnology, 2009, 27(3):168-178
    [14] 谢倍珍, 苏强, 杨少强, 等. 填充竹炭对微生物燃料电池性能的影响. 环境污染与防治, 2014, 36(2):1-4 Xie Beizhen, Su Qiang, Yang Shaoqiang, et al. Effect of bamboo charcoal filler on the performance of microbial fuel cell. Environmental Pollution and Control, 2014, 36(2):1-4(in Chinese)
    [15] Moon H., Chang I. S., Kang K. H., et al. Improving the dynamic response of a mediator-less microbial fuel cell as a biochemical oxygen demand (BOD) sensor. Biotechnology Letters, 2004, 26(22):1717-1721
    [16] Lorenzo M. D., Curtis T. P., Head I. M., et al. A single-chamber microbial fuel cell as a biosensor for wastewaters. Water Research, 2009, 43(13):3145-3154
    [17] 黄霞, 范明志, 梁鹏, 等. 微生物燃料电池阳极特性对产电性能的影响. 中国给水排水, 2007, 23(3):8-13 Huang Xia, Fan Mingzhi, Lang Peng, et al. Influence of anodic characters of microbial fuel cell on power generation performance. China Water & Wastewater, 2007, 23(3):8-13(in Chinese)
    [18] 孙世昌, 张盼月, 孙德智, 等. 无介体微生物燃料电池型BOD传感器研究进展. 安全与环境学报, 2010, 10(5):69-72 Sun Shichang, Zhang Panyue, Sun Dezhi, et al. Research progress in mediator-less microbial fuel cell type BOD sensor. Journal of Safety and Environment, 2010, 10(5):69-72(in Chinese)
    [19] 彭新红, 于宏兵, 王鑫, 等. 碳纤维毡表面改性对微生物燃料电池性能的影响. 环境工程学报, 2013, 7(10):4139-4143 Peng Xinhong, Yu Hongbing, Wang Xin, et al. Effect of carbon felt surface modification on performance in microbial fuel cell. Chinese Journal of Environmental Engineering, 2013, 7(10):4139-4143(in Chinese)
    [20] Sun B., Skyllas-Kazacos M. Modification of graphite electrode materials for vanadium redox flow battery application-I. Thermal treatment. Electrochimica Acta, 1992, 37(7):1253-1260
    [21] 李建海. 海底沉积物微生物燃料电池阳极表面改性及电极构型研究. 青岛:中国海洋大学硕士论文, 2010 Li Jianhai. Research of anode surface modification and electrode shape in the benthic sediment microbial fuel cell. Qingdao:Master Dissertation of Ocean University of China, 2010(in Chinese)
    [22] Scott K., Rimbu G. A., Katuri K. P., et al. Application of modified carbon anodes in microbial fuel cells. Process Safety and Environmental Protection, 2007, 85(5):481-488
    [23] 田帅, 张盼月, 梁英梅, 等. 双室微生物燃料电池型BOD传感器性能. 环境工程学报, 2014, 8(6):2626-2632 Tian Shuai, Zhang Panyue, Liang Yingmei, et al. Performances of double-chamber microbial fuel cell-based BOD sensor. Chinese Journal of Environmental Engineering, 2014, 8(6):2626-2632(in Chinese)
    [24] 王云英, 孟江燕, 陈学斌, 等. 复合材料用碳纤维的表面处理. 表面技术, 2007, 36(3):53-57 Wang Yunying, Meng Jiangyan, Chen Xuebin, et al. Surface treatment of carbon fiber for composites. Surface Technology, 2007, 36(3):53-57(in Chinese)
    [25] Peixoto L., Min B., Martins G., et al. In situ microbial fuel cell-based biosensor for organic carbon. Bioelectrochemistry, 2011, 81(2):99-103
    [26] Gil G. C., Chang I. S., Kim B. H., et al. Operational parameters affecting the performance of a mediator-less microbial fuel cell. Biosensors & Bioelectronics, 2003, 18(4), 327-334
    [27] Liu Jing, Mattiasson B. Microbial BOD sensors for wastewater analysis. Water Research, 2002, 36(15):3786-3802
  • 加载中
计量
  • 文章访问数:  2086
  • HTML全文浏览数:  1700
  • PDF下载数:  420
  • 施引文献:  0
出版历程
  • 收稿日期:  2014-11-24
  • 刊出日期:  2016-03-18
海冰寒, 张盼月, 王靖怡, 吕晓雪, 徐自明. 阳极石墨毡酸处理对微生物燃料电池型BOD传感器性能的影响[J]. 环境工程学报, 2016, 10(3): 1075-1080. doi: 10.12030/j.cjee.20160311
引用本文: 海冰寒, 张盼月, 王靖怡, 吕晓雪, 徐自明. 阳极石墨毡酸处理对微生物燃料电池型BOD传感器性能的影响[J]. 环境工程学报, 2016, 10(3): 1075-1080. doi: 10.12030/j.cjee.20160311
Hai Binghan, Zhang Panyue, Wang Jingyi, Lü Xiaoxue, Xu Ziming. Effect of nitric acid treatment of anode material on performances of microbial fuel cell-based BOD sensor[J]. Chinese Journal of Environmental Engineering, 2016, 10(3): 1075-1080. doi: 10.12030/j.cjee.20160311
Citation: Hai Binghan, Zhang Panyue, Wang Jingyi, Lü Xiaoxue, Xu Ziming. Effect of nitric acid treatment of anode material on performances of microbial fuel cell-based BOD sensor[J]. Chinese Journal of Environmental Engineering, 2016, 10(3): 1075-1080. doi: 10.12030/j.cjee.20160311

阳极石墨毡酸处理对微生物燃料电池型BOD传感器性能的影响

  • 1. 北京林业大学水体污染源控制技术北京市重点实验室, 北京 100083
基金项目:

国家自然科学基金资助项目(51178047)

国家级大学生创新创业训练项目(201310022070)

摘要: 通过石墨毡表面润湿性的变化,确定了硝酸酸化处理石墨毡的操作条件。采用硝酸处理后的石墨毡作为电极材料,构建双室无介体微生物燃料电池(microbial fuel cell,MFC)型BOD传感器,并对BOD传感器的性能进行评价。结果表明,硝酸酸化处理明显提高石墨毡表面的润湿性,经过4 h酸化处理,石墨毡的表面接触角由142.5°下降到86.5°。采用硝酸处理的石墨毡作为电极材料,MFC的电流输出明显提高且稳定,在响应时间小于10 h条件下,废水BOD检测上限为100 mg/L。废水BOD浓度在2~50 mg/L范围内,可以利用BOD浓度与电流最大值之间的线性关系进行废水BOD浓度检测,废水BOD浓度在2~100 mg/L范围内,可以利用BOD浓度与电荷量之间的线性关系对废水BOD浓度进行检测,检测相对误差均在12%以下。MFC型BOD传感器运行稳定,相对标准偏差均在10%以下。

English Abstract

参考文献 (27)

返回顶部

目录

/

返回文章
返回