阳宗海沉积物中重金属生物有效性评估

杨常亮, 陈桂明, 李世玉, 冯文波, 邵欢瑜, 刘仍兵, 刘楷, 刘彬, 王艳丹. 阳宗海沉积物中重金属生物有效性评估[J]. 环境工程学报, 2016, 10(3): 1191-1199. doi: 10.12030/j.cjee.20160330
引用本文: 杨常亮, 陈桂明, 李世玉, 冯文波, 邵欢瑜, 刘仍兵, 刘楷, 刘彬, 王艳丹. 阳宗海沉积物中重金属生物有效性评估[J]. 环境工程学报, 2016, 10(3): 1191-1199. doi: 10.12030/j.cjee.20160330
Yang Changliang, Chen Guiming, Li Shiyu, Feng Wenbo, Shao Huanyu, Liu Rengbing, Liu Kai, Liu Bin, Wang Yandan. Assessment of bioavailability of heavy metals in sediments of Yangzonghai Lake[J]. Chinese Journal of Environmental Engineering, 2016, 10(3): 1191-1199. doi: 10.12030/j.cjee.20160330
Citation: Yang Changliang, Chen Guiming, Li Shiyu, Feng Wenbo, Shao Huanyu, Liu Rengbing, Liu Kai, Liu Bin, Wang Yandan. Assessment of bioavailability of heavy metals in sediments of Yangzonghai Lake[J]. Chinese Journal of Environmental Engineering, 2016, 10(3): 1191-1199. doi: 10.12030/j.cjee.20160330

阳宗海沉积物中重金属生物有效性评估

  • 基金项目:

    国家自然科学基金资助项目(51168047)

  • 中图分类号: X524

Assessment of bioavailability of heavy metals in sediments of Yangzonghai Lake

  • Fund Project:
  • 摘要: 通过测定和分析阳宗海表层沉积物中酸可挥发性硫化物(AVS)和同步提取重金属(SEM)的含量和分布特征,采用SEM/AVS方法对阳宗海表层沉积物中重金属的生物有效性进行评估;同时,采用生物有效阈值法评估了单一重金属的生物有效性。研究得出以下结论:阳宗海表层沉积物中AVS含量为15.09~149.74 μmol/g,平均值为49.42 μmol/g,从南向北呈递减趋势;AVS在南部和中部均与湖泊水深呈现正相关关系;∑SEM(包括Cu、Cr、Pb、Zn、Mn、As、Cd)含量分布波动较小,其范围为4.84~16.10 μmol/g,平均值为10.28 μmol/g,其分布规律为北部大于南部;阳宗海各采样点SEM/AVS<1,说明阳宗海表层沉积物中重金属不会对生物产生不良影响;从单一重金属来看,Pb可能经常产生生物毒性,Cu有可能产生生物毒性,其他金属除部分点可能产生生物毒性外,整体上几乎不会产生生物毒性。
  • 加载中
  • [1] Yang Liu, Vijver M. G., Peijnenburg W. J. G. M. Comparing three approaches in extending biotic ligand models to predict the toxicity of binary metal mixtures (Cu-Ni, Cu-Zn and Cu-Ag) to lettuce(Lactuca sativa L.). Chemosphere, 2014, 112:282-288
    [2] Di Toro D. M., Mahony J. D., Hansen D. J., et al. Toxicity of cadmium in sediments:The role of acid volatile sulfide. Environmental Toxicology and Chemistry, 1990, 9(12):1487-1502
    [3] Rickard D., Morse J. W. Acid volatile sulfide (AVS). Marine Chemistry, 2005, 97(3-4):141-197
    [4] 张弛, 王树功, 朱远辉, 等. 红树林湿地沉积物中AVS-SEM与重金属分布特征:以珠江口淇澳岛为例. 环境科学学报, 2011, 31(4):805-815 Zhang Chi, Wang Shugong, Zhu Yuanhui, et al. Distributions of AVS-SEM and heavy metals in mangrove sediments:A case study at Qi'ao island in the Pearl River estuary. Acta Scientiae Circumstantiae, 2011, 31(4):805-815(in Chinese)
    [5] 李金城, 宋进喜, 王晓蓉. 太湖五里湖区表层沉积物中酸挥发性硫化物和同步提取金属. 湖泊科学, 2004, 16(1):77-80 Li Jincheng, Song Jinxi, Wang Xiaorong. Acid volatile sulfides and simmltaneous extracted metals in the surficial sediments of Wuli Lake, Lake Taihu. Journal of Lake Sciences, 2004, 16(1):77-80(in Chinese)
    [6] 利锋, 温琰茂, 朱娉婷, 等. 污染沉积物AVS对水丝蚓体内重金属积累的影响. 环境科学学报, 2008, 28(11):2250-2257 Li Feng, Wen Yanmao, Zhu Pingting, et al. The influence of AVS in contaminated sediments on heavy metal bioaccumulation in Limnodrilus sp. Acta Scientiae Circumstantiae, 2008, 28(11):2250-2257(in Chinese)
    [7] 何绪文, 胡建龙, 李静文, 等. 硫化物沉淀法处理含铅废水. 环境工程学报, 2013, 7(4):1394-1398 He Xuwen, Hu Jianlong, Li Jingwen, et al. Treatment of wastewater containing lead by sodium sulfide precipitation. Chinese Journal of Environmental Engineering, 2013, 7(4):1394-1398(in Chinese)
    [8] 黄万抚, 王淑君. 硫化沉淀法处理矿山酸性废水研究. 环境污染治理技术与设备, 2004, 5(8):60-82 Huang Wanfu, Wang Shujun. Research on treatment of mine wastewater using sulfide precipitation floatation. Techniques and Equipment for Environmental Pollution Control, 2004, 5(8):60-82(in Chinese)
    [9] Carlson A. R., Phipps G. L., Mattson V. R., et al. The role of acid-volatile sulfide in determining cadmium bioavailability and toxicity in freshwater sediments. Environmental Toxicology and Chemistry, 1991, 10(10):1309-1319
    [10] 刘景春, 严重玲, 胡俊. 水体沉积物中酸可挥发性硫化物(AVS)研究进展. 生态学报, 2004, 24(4):812-818 Liu Jingchun, Yan Chongling, Hu Jun. A review on the studies of acid-volatile sulfide in aquatic sediments. Acta Ecologica Sinica, 2004, 24(4):812-818(in Chinese)
    [11] Di Toro D. M., Mahony J. D., Hansen D. J., et al. Acid volatile sulfide predicts the acute toxicity of cadmium and nickel in sediments. Environmental Science & Technology, 1992, 26(1):96-101
    [12] Charlesworth S. M., Lees J. A. Particulate-associated heavy metals in the urban environment:Their transport from source to deposit, Coventry, UK. Chemosphere, 1999, 39(5):833-848
    [13] 刘清, 王子健, 汤鸿霄. 重金属形态与生物毒性及生物有效性关系的研究进展. 环境科学, 1996, 17(1):89-92 Liu Qing, Wang Zijian, Tang Hongxiao. Research progress in heavy metal speciation and toxicity and bioavailability of heavy metals. Environmental Science, 1996, 17(1):89-92(in Chinese)
    [14] 范文宏, 张博, 陈静生, 等. 锦州湾沉积物中重金属污染的潜在生物毒性风险评价. 环境科学学报, 2006, 26(6):1000-1005 Fan Wenhong, Zhang Bo, Chen Jingsheng, et al. Pollution and potential biological toxicity assessment using heavy metals from surface sediments of Jinzhou Bay. Acta Scientiae Circumstantiae, 2006, 26(6):1000-1005(in Chinese)
    [15] Henke K. R. Arsenic:Environmental Chemistry, Health Threats and Waste Treatment. Chichester:John Wiley & Sons Ltd., 2009
    [16] Nriagu J. O., Bhattacharya P., Mukherjee A. B., et al. Arsenic in soil and groundwater:An overview. Trace Metals and Other Contaminants in the Environment, 2007, 9:3-60
    [17] Marabottini R., Stazi S. R., Papp R., et al. Mobility and distribution of arsenic in contaminated mine soils and its effects on the microbial pool. Ecotoxicology and Environment Safety, 2013, 96:147-153
    [18] Stone D., Sherman J., Hofeld E. Arsenic in Oregon community water systems:Demography matters. Science of the Total Environment, 2007, 382(1):52-58
    [19] Chapman P. M., Wang Feiyue, Adams W. J., et al. Appropriate applications of sediment quality values for metals and metalloids. Environmental Science & Technology, 1999, 33(22):3937-3941
    [20] Berry W. J., Hansen D. J., Boothman W. S., et al. Predicting the toxicity of metal-spiked laboratory sediments using acid-volatile sulfide and interstitial water normalizations. Environmental Toxicology and Chemistry, 1996, 15(12):2067-2079
    [21] Brix K. V., Keithly J., Santore R. C., et al. Ecological risk assessment of zinc from stormwater runoff to an aquatic ecosystem. Science of the Total Environment, 2010, 408(8):1824-1832
    [22] Hansen D. J., Berry W. J., Boothman W. S., et al. Predicting the toxicity of metal-contaminated field sediments using interstitial concentration of metals and acid-volatile sulfide normalizations. Environmental Toxicology and Chemistry, 1996, 15(12):2080-2094
    [23] Ma D. Y., Wang J. Y., Ma D. Y., et al. The effects on chemical activity of divalent toxic metal in sediment-pore water of acid-volatile sulfide (AVS). Acta Oceanologica Sinica, 1997, 19(5):83-90
    [24] Wang J. Y., Ma D. Y., Yan Q. L., et al. The effect of acid volatile sulfide on geo-chemistry characteristics and toxicity of Cd in marine sediments. Oceanologia et Limnologia Sinica, 2001, 32(5):483-488
    [25] United States Environmental Protection Agency. Methods for Collection, Storage and Manipulation of Sediments for Chemical and Toxicological Analyses, Technical Manual EPA-823-B-01-002. Washington D.C.:United States Environmental Protection Agency, 2001
    [26] United States Environmental Protection Agency. The incidence and severity of sediment contamination in surface waters of the United States. vol 1:National sediment quality survey[EPA 823-R-04-007]. Washington D C:United States Environmental Protection Agency,2004
    [27] Sibley P. K., Ankley G. T., Cotter A. M., et al. Predicting chronic toxicity of sediments spiked with zinc:An evaluation of the acid-volatile sulfide model using a life-cycle test with the midge Chironomus tentans. Environmental Toxicology and Chemistry, 1996, 15(12):2102-2112
    [28] Poot A., Meerman E., Gillissen F., et al. A kinetic approach to evaluate the association of acid volatile sulfide and simultaneously extracted metals in aquatic sediments. Environmental Toxicology and Chemistry, 2009, 28(4):711-717
    [29] Berry W. J., Cantwell M. G., Edwards P. A., et al. Predicting toxicity of sediments spiked with silver. Environmental Toxicology and Chemistry, 1999, 18(1):40-48
    [30] Shipley H. J., Gao Yan, Kan A. T., et al. Mobilization of trace metals and inorganic compounds during resuspension of anoxic sediments from Trepangier Bayou, Louisiana. Journal of Environmental Quality, 2011, 40(2):484-491
    [31] Lee B. G., Lee J. S., Luoma S. N., et al. Influence of acid volatile sulfide and metal concentrations on metal bioavailability to marine invertebrates in contaminated sediments. Environmental Science & Technology, 2000, 34(21):4517-4523
    [32] Lacey E. M., King J. W., Quinn J. G., et al. Sediment quality in Burlington Harbor, Lake Champlain, U.S.A. Water, Air, and Soil Pollution, 2001, 126(1-2):97-120
    [33] 宋进喜, 李金成, 王晓蓉, 等. 太湖梅梁湾沉积物中酸挥发性硫化物垂直变化特征研究. 环境科学学报, 2004, 24(2):271-274 Song Jinxi, Li Jincheng, Wang Xiaorong, et al. Vertical variability of acid volatile sulfide (AVS) in the sediments of Meiliang Bay, Taihu Lake. Acta Scientiae Circumstantiae, 2004, 24(2):271-274(in Chinese)
    [34] Wolfenden S., Charnock J. M., Hilton J., et al. Sulfide species as a sink for mercury in lake sediments. Environmental Science & Technology, 2005, 39(17):6644-6648
    [35] 张玉玺, 孙继朝, 王金翠, 等. 阳宗海表层沉积物磷、氟、硫的分布与污染状况. 环境监测管理与技术, 2011, 23(4):37-40 Zhang Yuxi. Sun Jichao, Wang Jincui, et al. Distribution and pollution of phosphorus, fluorine and sulfur in surface sediments from Lake Yangzonghai. The Administration and Technique of Environmental Monitoring, 2011, 23(4):37-40(in Chinese)
    [36] 尹洪斌, 范成新, 蔡永久. 太湖表层沉积物AVS与SEM分布特征及相互关系. 湖泊科学, 2008, 20(5):585-590 Yin Hongbin, Fan Chengxin, Cai Yongjiu. Distribution characteristic and correlation of AVS and SEM in surface sediments of Lake Taihu. Journal of Lake Sciences, 2008, 20(5):585-590(in Chinese)
    [37] 赵铮, 姜霞, 吴永贵, 等. 太湖沉积物酸可挥发性硫化物分布特征及重金属生物有效性评价. 环境科学学报, 2011, 31(12):2714-2722 Zhao Zheng, Jiang Xia, Wu Yonggui, et al. Distribution characteristics of acid volatile sulfide and bioavailability evaluation of heavy metals in sediments of Lake Taihu. Acta Scientiae Circumstantiae, 2011, 31(12):2714-2722(in Chinese)
    [38] Oehm N. J., Luben T. J., Ostrofsky M. L. Spatial distribution of acid-volatile sulfur in the sediments of Canadohta Lake, PA. Hydrobiologia, 1997, 345(1):79-85
    [39] Van Griethuysena C., Meijboom E. W., Koelmans A. A. Spatial variation of metals and acid volatile sulfide in fioodplain lake sediment. Environmental Toxicology and Chemistry, 2003, 22(3):457-465
    [40] Mackey A. P., Mackay S. Spatial distribution of acid-volatile sulphide concentration and metal bioavailability in mangrove sediments from the Brisbane River, Australia. Environmental Pollution, 1996, 93(2):205-209
    [41] 贾振邦, 林健枝, 吕丰伟. 香港沉积物氧化过程对铅的约束作用. 北京大学学报(自然科学版), 1999, 35(6):834-841 Jia Zhenbang, Lin Jianzhi, Lv Fengwei. Effect of aeration of Hong Kong sediment on lead binding. Acta Scientiarum Naturalium Universitatis Pekinensis, 1999, 35(6):834-841(in Chinese)
    [42] Nedwell D. B., Abram J. W. Bacterial sulphate reduction in relation to sulphur geochemistry in two contrasting areas of saltmarsh sediment. Estuarine and Coastal Marine Science, 1978, 6(4):341-351
    [43] Zhuang Wen, Gao Xuelu. Acid-volatile sulfide and simultaneously extracted metals in surface sediments of the southwestern coastal Laizhou Bay, Bohai Sea:Concentrations, spatial distributions and the indication of heavy metal pollution status. Marine Pollution Bulletin, 2013, 76(1-2):128-138
    [44] Wijsman J. W. M., Middelburg J. J., Herman P. M. J., et al. Sulfur and iron speciation in surface sediments along the northwestern margin of the Black Sea. Marine Chemistry, 2001, 74(4):261-278
    [45] 施玉珍, 张际标, 李雪英, 等. 深圳湾海域沉积物中酸可挥发性硫化物与重金属生态风险评价. 海洋环境科学, 2012, 31(4):492-495 Shi Yuzhen, Zhang Jibiao, Li Xueying, et al. Assessment on ecological risk of acid-volatile sulfide and tracemetals in marine sediment of Shenzhen Bay. Marine Environmental Science, 2012, 31(4):492-495(in Chinese)
    [46] 王飞越, 汤鸿宵. 水体沉积物中的酸挥发性硫化物(AVS)及其对沉积物环境质量的影响. 环境科学进展, 1997, 5(1):1-6 Wang Feiyue, Tang Hongxiao. Acid volatile sulfide in aquatic sediments and its effect on sediment quality. Advances in Environmental Science, 1997, 5(1):1-6(in Chinese)
    [47] 张玉玺, 孙继朝, 向小平, 等. 云南阳宗海湖底沉积物重金属分布与来源. 环境科学与技术, 2010, 33(12):171-175 Zhang Yuxi, Sun Jichao, Xiang Xiaoping, et al. A survey of heavy metals in sediments of Yangzonghai Lake in Yunnan Province:Their source and distribution. Environmental Science & Technology, 2010, 33(12):171-175(in Chinese)
    [48] Simpson S. L., Ward D., Strom D., et al. Oxidation of acid-volatile sulfide in surface sediments increases the release and toxicity of copper to the benthic amphipod Melita plumulosa. Chemosphere, 2012, 88(8):953-961
    [49] 王振华, 何滨, 潘学军, 等. 云南阳宗海砷污染水平、变化趋势及风险评估. 中国科学:化学, 2011, 41(3):556-564 Wang Zhenhua, He Bin, Pan Xuejun, et al. The levels, trends and risk assessment of arsenic pollution in Yangzonghai Lake, Yunnan. Scientia Sinica Chimica, 2011, 41(3):556-564(in Chinese)
    [50] 齐剑英, 许振成, 李祥平, 等. 阳宗海水体中砷的形态分布特征及来源研究. 安徽农业科学, 2010, 38(20):10789-10792 Qi Jianying, Xu Zhencheng, Li Xiangping, et al. Study on source and speciation distribution characteristics of arsenic in Yangzonghai Lake waters. Journal of Anhui Agricultural Sciences, 2010, 38(20):10789-10792(in Chinese)
    [51] 张玉玺, 向小平, 张英, 等. 云南阳宗海砷的分布与来源. 环境科学, 2012, 33(11):3768-3777 Zhang Yuxi, Xiang Xiaoping, Zhang Ying, et al. Distribution and sources of arsenic in Yangzonghai Lake, China. Environmental Science, 2012, 33(11):3768-3777(in Chinese)
  • 加载中
计量
  • 文章访问数:  1867
  • HTML全文浏览数:  1463
  • PDF下载数:  445
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-01-07
  • 刊出日期:  2016-03-18
杨常亮, 陈桂明, 李世玉, 冯文波, 邵欢瑜, 刘仍兵, 刘楷, 刘彬, 王艳丹. 阳宗海沉积物中重金属生物有效性评估[J]. 环境工程学报, 2016, 10(3): 1191-1199. doi: 10.12030/j.cjee.20160330
引用本文: 杨常亮, 陈桂明, 李世玉, 冯文波, 邵欢瑜, 刘仍兵, 刘楷, 刘彬, 王艳丹. 阳宗海沉积物中重金属生物有效性评估[J]. 环境工程学报, 2016, 10(3): 1191-1199. doi: 10.12030/j.cjee.20160330
Yang Changliang, Chen Guiming, Li Shiyu, Feng Wenbo, Shao Huanyu, Liu Rengbing, Liu Kai, Liu Bin, Wang Yandan. Assessment of bioavailability of heavy metals in sediments of Yangzonghai Lake[J]. Chinese Journal of Environmental Engineering, 2016, 10(3): 1191-1199. doi: 10.12030/j.cjee.20160330
Citation: Yang Changliang, Chen Guiming, Li Shiyu, Feng Wenbo, Shao Huanyu, Liu Rengbing, Liu Kai, Liu Bin, Wang Yandan. Assessment of bioavailability of heavy metals in sediments of Yangzonghai Lake[J]. Chinese Journal of Environmental Engineering, 2016, 10(3): 1191-1199. doi: 10.12030/j.cjee.20160330

阳宗海沉积物中重金属生物有效性评估

  • 1. 云南大学生态学与环境学院, 昆明 650091
  • 2. 昆明市环境监测中心, 昆明 650227
  • 3. 云南大学城市建设与管理学院, 昆明 650091
基金项目:

国家自然科学基金资助项目(51168047)

摘要: 通过测定和分析阳宗海表层沉积物中酸可挥发性硫化物(AVS)和同步提取重金属(SEM)的含量和分布特征,采用SEM/AVS方法对阳宗海表层沉积物中重金属的生物有效性进行评估;同时,采用生物有效阈值法评估了单一重金属的生物有效性。研究得出以下结论:阳宗海表层沉积物中AVS含量为15.09~149.74 μmol/g,平均值为49.42 μmol/g,从南向北呈递减趋势;AVS在南部和中部均与湖泊水深呈现正相关关系;∑SEM(包括Cu、Cr、Pb、Zn、Mn、As、Cd)含量分布波动较小,其范围为4.84~16.10 μmol/g,平均值为10.28 μmol/g,其分布规律为北部大于南部;阳宗海各采样点SEM/AVS<1,说明阳宗海表层沉积物中重金属不会对生物产生不良影响;从单一重金属来看,Pb可能经常产生生物毒性,Cu有可能产生生物毒性,其他金属除部分点可能产生生物毒性外,整体上几乎不会产生生物毒性。

English Abstract

参考文献 (51)

返回顶部

目录

/

返回文章
返回