初始pH和温度对餐厨垃圾厌氧发酵制氢的影响

王勇, 任连海, 赵冰, 贾璇. 初始pH和温度对餐厨垃圾厌氧发酵制氢的影响[J]. 环境工程学报, 2017, 11(12): 6470-6476. doi: 10.12030/j.cjee.201702160
引用本文: 王勇, 任连海, 赵冰, 贾璇. 初始pH和温度对餐厨垃圾厌氧发酵制氢的影响[J]. 环境工程学报, 2017, 11(12): 6470-6476. doi: 10.12030/j.cjee.201702160
WANG Yong, REN Lianhai, ZHAO Bing, JIA Xuan. Effect of initial pH and temperature on biohydrogen production from food waste by anaerobic fermentation[J]. Chinese Journal of Environmental Engineering, 2017, 11(12): 6470-6476. doi: 10.12030/j.cjee.201702160
Citation: WANG Yong, REN Lianhai, ZHAO Bing, JIA Xuan. Effect of initial pH and temperature on biohydrogen production from food waste by anaerobic fermentation[J]. Chinese Journal of Environmental Engineering, 2017, 11(12): 6470-6476. doi: 10.12030/j.cjee.201702160

初始pH和温度对餐厨垃圾厌氧发酵制氢的影响

  • 基金项目:

    国家自然科学基金资助项目(21406213)

  • 中图分类号: X703

Effect of initial pH and temperature on biohydrogen production from food waste by anaerobic fermentation

  • Fund Project:
  • 摘要: 以餐厨垃圾为发酵底物,研究不同初始pH和发酵温度对餐厨垃圾厌氧发酵制氢潜力、中间代谢产物和发酵途径的影响。结果表明,初始pH和发酵温度对餐厨垃圾厌氧发酵产氢性能及代谢途径具有显著影响,高温发酵的产氢效率优于中温发酵。55℃高温、初始pH为6时厌氧发酵产氢性能最佳,累积产气量、最大氢气含量最大,分别达到620 mL和52.45%,挥发性脂肪酸中丁酸浓度最高为6 182.96 mg·L-1,发酵类型以丁酸型发酵途径为主。通过初始pH和发酵温度的优化控制可以有效提高产氢微生物的底物利用效率和产氢潜能,改变厌氧发酵途径,保证厌氧发酵制氢系统高效稳定运行。
  • 加载中
  • [1] ZHANG C, SU H, BAEYENS J, et al. Reviewing the anaerobic digestion of food waste for biogas production[J]. Renewable & Sustainable Energy Reviews,2014,38(5):383-392
    [2] 钟磊. 浅谈我国餐厨垃圾的回收与利用[J]. 再生资源与循环经济,2013,6(2):23-25
    [3] 张庆芳, 杨林海, 周丹丹. 餐厨垃圾废弃物处理技术概述[J]. 中国沼气,2012,30(1):22-26
    [4] 袁玉玉, 曹先艳, 牛冬杰, 等.餐厨垃圾特性及处理技术[J]. 环境卫生工程,2006,14(6):46-49
    [5] 董蕾, 占美丽, 孙英杰, 等. 餐厨垃圾高温厌氧消化[J]. 环境工程学报,2013,7(6):2355-2360
    [6] 张国华, 张志红, 黄江丽, 等. 餐厨垃圾厌氧发酵连续产氢产甲烷的试验研究[J]. 中国沼气,2016,34(4):8-12
    [7] 魏自民, 夏天明, 李鸣晓, 等. 不同湿热预处理条件对餐厨垃圾厌氧发酵产氢的影响[J]. 环境科学研究,2013,26(11):1239-1245
    [8] 任南琪, 王宝贞. 有机废水处理生物制氢技术[J]. 中国环境科学,1994,14(6):411-415
    [9] LI Mingxiao, XIA Tianming, ZHU Chaowei, et al. Effect of short-time hydrothermal pretreatment of kitchen waste on biohydrogen production:Fluorescence spectroscopy coupled with parallel factor analysis[J]. Bioresource Technology,2014,172:382
    [10] 夏天明, 黄凯锋, 李鸣晓, 等. 湿热预处理对餐厨废弃物厌氧产氢发酵类型的影响[J]. 环境工程技术学报,2014,4(2):150-157
    [11] 朱金龙, 魏自民, 贾璇, 等. 湿热水解预处理对餐厨废弃物液相物质转化的影响[J]. 环境科学研究,2015,28(3):440-446
    [12] WANG Jianlong, WANG Wei. Factors influencing fermentative hydrogen production:A review[J]. International Journal of Hydrogen Energy,2009,34(2):799-811
    [13] 宫曼丽, 任南琪, 唐婧, 等. pH 5条件下生物制氢反应器的启动及运行特性[J]. 环境科学,2005,26(2):177-180
    [14] FANG H H, LIU Hong. Effect of pH on hydrogen production from glucose by a mixed culture.[J]. Bioresource Technology,2002,82(1):87-93
    [15] REN Nanqi, XING Defeng, RITTMANN B E, et al. Microbial community structure of ethanol type fermentation in bio-hydrogen production[J]. Environmental Microbiology,2007,9(5):1112-1125
    [16] KIM D H, KIM S H, JUNG K W, et al. Effect of initial pH independent of operational pH on hydrogen fermentation of food waste[J]. Bioresource Technology,2011,102(18):8646-8652
    [17] KIM D H, KIM S H, KO I B, et al. Start-up strategy for continuous fermentative hydrogen production:Early switchover from batch to continuous operation[J]. International Journal of Hydrogen Energy,2008,33(5):1532-1541
    [18] ZHAI Ningning, ZHANG Tong, YIN Dongxue, et al. Effect of initial pH on anaerobic co-digestion of kitchen waste and cow manure[J]. Waste Management,2015,38(1):126-131
    [19] 吴满昌, 孙可伟, 李如燕, 等. 温度对城市生活垃圾厌氧消化的影响[J]. 生态环境,2005,14(5):683
    [20] KOMEMOTO K, LIM Y G, NAGAO N, et al. Effect of temperature on VFA's and biogas production in anaerobic solubilization of food waste[J]. Waste Management,2009,29(12):2950-2955
    [21] GOU Chenliu, YANG Zhaohui, HUANG Jing, et al. Effects of temperature and organic loading rate on the performance and microbial community of anaerobic co-digestion of waste activated sludge and food waste[J]. Chemosphere,2014,105(3):146-151
    [22] 袁玲莉, 孙岩斌, 文雪, 等. 不同预处理对餐厨垃圾厌氧联产氢气和甲烷的影响[J].中国沼气,2015,33(2):13-18
    [23] HAN Wei, YE Min, ZHU Aijun, et al. Batch dark fermentation from enzymatic hydrolyzed food waste for hydrogen production[J]. Bioresource Technology,2015,191:24-29
    [24] 赵凯, 许鹏举, 谷广烨. 3,5-二硝基水杨酸比色法测定还原糖含量的研究[J]. 食品科学,2008,29(8):534-536
    [25] 环境保护部.HJ 535-2009水质氨氮的测定纳氏试剂分光光度法[S].北京:中国标准出版社,2010
    [26] 刘常青, 张江山, 牛冬杰, 等.初始pH对酸性预处理污泥厌氧发酵产氢的影响[J].环境科学,2008,29(9):2628-2632
    [27] YASHIN N H M, RAHMAN N A, MAN H C, et al. Microbial characterization of hydrogen-producing bacteria in fermented food waste at different pH values[J]. International Journal of Hydrogen Energy,2011,36(16):9571-9580
    [28] CHEN Xiang, YAN Wei, SHENG Kuichuan, et al. Comparison of high-solid to liquid anaerobic co-digestion of food waste and green waste[J]. Bioresource Technology,2014,154:150-156
    [29] SCHIEVANO A, D'IMPORZANO G, SALATI S, et al. On-field study of anaerobic digestion full-scale plants(part1):An on-field methodology to determine mass, carbon and nutries balance[J]. Bioresource Technology,2011,102(17):7737-7744
    [30] ZHANG Y, BANKS C J. Impact of different particle size distributions on anaerobic digestion of the organic fraction of municipal solid waste[J]. Waste Management,2013,33(2):297-307
    [31] 唐波, 李蕾, 何琴, 等. 总氨氮在餐厨垃圾厌氧消化系统中的积累及其抑制作用[J]. 环境科学学报,2016,36(1):210-216
    [32] TAMPIO E, ERVASTI S, PAAVOLA T, et al. Anaerobic digestion of autoclaved and untreated food waste[J]. Waste Management,2014,34(2):370-377
    [33] ESPINOZAESCALANT F M, PELAYOEORTIZ C, NAVARROCORONA J, et al. Anaerobic digestion of the vinasses from the fermentation of Agave tequilana Weber to tequila:The effect of pH, temperature and hydraulic retention time on the production of hydrogen and methane[J]. Biomass & Bioenergy,2009,33(1):14-20
    [34] 李永峰, 任南琪, 胡立杰. 高浓度有机废水发酵法制取氢气技术[J]. 现代化工,2005,25(3):10-13
    [35] 任南琪, 王爱杰. 厌氧生物技术原理与应用[M]. 北京:化学工业出版社
    [36] FAN Y, LI C, LAY J J, et al. Optimization of initial substrate and pH levels for germination of sporing hydrogen-producing anaerobes in cow dung compost[J]. Bioresource Technology,2004,91(2):189-193
    [37] 陈琛, 刘敏, 陈滢. pH对热处理污泥厌氧发酵产氢的影响[J]. 环境科学与技术,2011,34(4):163-167
  • 加载中
计量
  • 文章访问数:  2808
  • HTML全文浏览数:  2548
  • PDF下载数:  469
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-09-08
  • 刊出日期:  2017-12-07
王勇, 任连海, 赵冰, 贾璇. 初始pH和温度对餐厨垃圾厌氧发酵制氢的影响[J]. 环境工程学报, 2017, 11(12): 6470-6476. doi: 10.12030/j.cjee.201702160
引用本文: 王勇, 任连海, 赵冰, 贾璇. 初始pH和温度对餐厨垃圾厌氧发酵制氢的影响[J]. 环境工程学报, 2017, 11(12): 6470-6476. doi: 10.12030/j.cjee.201702160
WANG Yong, REN Lianhai, ZHAO Bing, JIA Xuan. Effect of initial pH and temperature on biohydrogen production from food waste by anaerobic fermentation[J]. Chinese Journal of Environmental Engineering, 2017, 11(12): 6470-6476. doi: 10.12030/j.cjee.201702160
Citation: WANG Yong, REN Lianhai, ZHAO Bing, JIA Xuan. Effect of initial pH and temperature on biohydrogen production from food waste by anaerobic fermentation[J]. Chinese Journal of Environmental Engineering, 2017, 11(12): 6470-6476. doi: 10.12030/j.cjee.201702160

初始pH和温度对餐厨垃圾厌氧发酵制氢的影响

  • 1. 北京工商大学食品学院环境科学与工程系, 北京 100048
基金项目:

国家自然科学基金资助项目(21406213)

摘要: 以餐厨垃圾为发酵底物,研究不同初始pH和发酵温度对餐厨垃圾厌氧发酵制氢潜力、中间代谢产物和发酵途径的影响。结果表明,初始pH和发酵温度对餐厨垃圾厌氧发酵产氢性能及代谢途径具有显著影响,高温发酵的产氢效率优于中温发酵。55℃高温、初始pH为6时厌氧发酵产氢性能最佳,累积产气量、最大氢气含量最大,分别达到620 mL和52.45%,挥发性脂肪酸中丁酸浓度最高为6 182.96 mg·L-1,发酵类型以丁酸型发酵途径为主。通过初始pH和发酵温度的优化控制可以有效提高产氢微生物的底物利用效率和产氢潜能,改变厌氧发酵途径,保证厌氧发酵制氢系统高效稳定运行。

English Abstract

参考文献 (37)

返回顶部

目录

/

返回文章
返回