重庆城区PM2.5化学组分特征及季节变化
Characteristics of chemical components of PM2.5 and its seasonal variations in Chongqing urban area
-
摘要: 2014年7月-2015年5月典型季节期间在重庆城区选择典型站点开展PM2.5样品采集,并测量质量浓度,分析样品中水溶性离子、无机元素、OC和EC等组分,在此基础上对组分化学组成进行了质量重构。结果表明:观测期间PM2.5年均值为76.4 μg·m-3,浓度季节变化为冬季 > 秋季 > 春季 > 夏季;组分方面,以二次转化为主的SO42-、NH4+、NO3-和OC是PM2.5组分中最主要成分,OC/EC比值4个季度均大于2,表明城区二次有机碳生成显著;硫氧化率(SOR)分析,气态污染物SO2的二次转化效率较高,大气存在明显的二次转化过程。PM2.5质量重构后主要组成为有机气溶胶(OM)、二次无机离子(SNA)和矿物尘,重庆城区应协同控制一次排放的颗粒物和气态污染物SO2和NOx,从而控制二次组分浓度。Abstract: A series of PM2.5 sampling was conducted from July 2014 to May 2015 at typicalsites in the urban areas of Chongqing. The mass concentrations of PM2.5 were measured, and water-soluble ions, elements, organic and elemental carbon (OC and EC) quantified. The measured PM2.5 mass was reconstructed based on SO42-, NO3-, NH4+, organic matter (OM), and EC. The average mass concentration of PM2.5 was 76.4 μg·m-3. The seasonal variation of PM2.5 mass followed an order:winter > autumn > spring > summer.Sulfate, ammonium, nitrate and organic carbon were the major specifications in PM2.5. The ratio of OC/EC was greater than two in four seasons during the sampling period, indicating that the formation of secondary organic carbon was significant annually. Sulfur oxidation ratio (SOR) analysis showed that the secondary conversion efficiency of sulfur dioxides was high. OM, SNA, and mineral dust were dominant compositions in PM2.5;the PM precursors, including sulfur dioxides and nitric oxides, should be controlled simultaneously, in order to control the secondary aerosol formation.
-
Key words:
- PM2.5 concentration /
- chemical components /
- characteristics
-
[1] 黄玉虎, 李媚, 曲松, 等.北京城区PM2.5不同组分构成特征及其对大气消光系数的贡献[J]. 环境科学研究,2015,28(8):1193-1199 [2] 陶俊, 张仁健, 许振成, 等. 广州冬季大气消光系数的贡献因子研究[J].气候与环境研究,2009,14(5):484-490 [3] 王占山,李云婷,陈添,等. 2013年北京市PM2.5的时空分布[J]. 地理学报,2015,70(1):110-120 [4] 林瑜,叶芝祥,杨怀金,等. 成都市西南郊区春季大气PM2.5的污染水平及来源解析[J]. 环境科学,2016,37(5):1629-1638 [5] 卢慧剑. 典型沿海城市PM2.5污染特征及其来源解析研究[D].杭州:浙江大学,2016 [6] HALLQUIST M,STEWART D J,STEPHENSON S K, et al..Hydrolysis of N2O5 on sub-micron sulfate aerosols[J].Physical Chemistry Chemical Physics,2003,5(16):3453-2463 [7] WANG H C,JOHN W.Characteristis of the burner impactor for sampling inorganic ions[J].Aerocol Science and Technology,1988,8(2):157-172 [8] 刘珊,彭林,温彦平,等. 太原市PM2.5中有机碳和元素碳的污染特征[J]. 环境科学,2015,36(2):396-401 [9] 甘婷,李梅,黄正旭,等. 不同季节广东鹤山超级站大气颗粒物中有机碳(OC)和元素碳(EC)粒径分布研究[J]. 分析化学,2015,43(12):1934-1941 [10] 谭学士. 天津市大气颗粒物中OC/EC污染特征与细粒径来源解析[D].北京:北京化工大学,2015 [11] TURPIN B J, HUNLZICKER J J. Identification of secondary organic aerosol episodes and quantification of primary and secondary organic aerosol concentrations during SCAQS[J]. Atmospheric Environment,1995,29(23):3527-3544 [12] KLEEMAN M J,RIDDLE S G,ROBERT M A, et al. Lubricating oil and fuel contributions to particulate matter emissions from light-duty gasoline and henvy-duty diesel vehicles[J]. Environment Science and Technology,2008,42(1):235-242 [13] LIM H J, TURPIN B J. RUSSELL L M, et al. Organic and elemental carbon measurements during ACE-Asia suggest a longer atmospheric lifetime for elemental carbon[J]. Environment Science and Technology,2003,37(14):3055-3061 [14] SAYLOR R D, EDGERTON E S, HARTSELL B E. Linear regression techniques for sue in the EC tracer method of secondary organic aerosol estimation[J]. Atmospheric Environment,2006,40(39):7546-7556 [15] TURPIN B J, HUNTZICKER J J.Secondary formation of organic aerosol in Los Angeles basin:A descriptive analysis of organic and elemental carbon concentrations[J]. Atmospheric Environment,1991,25(2):207-215 [16] LIM H J, TURPIN B J.Origins of primary and secondary organic aerosol in Atlanta:Results of time-resolved measurement during the Atlnnta duper site experiment[J]. Environment Science and Technology,2002,36(21):4489-4496 [17] SHEEHAN P E,BOWMAN F M. Estimated effects on temperature on secondary organic aerosol concentrations[J]. Environment Science & Technology,2001,35(11):2129-2134 [18] WANG Y, ZHUANG G S, TANG A H, et al. The ion chemistry and the source of PM2.5 aerosol in Beijing.[J].Atmospheric Environment,2005,39(21):3771-3784 [19] 高晓梅. 我国典型地区大气PM2.5水溶性离子的理化特征及来源解析[D].济南:山东大学,2012 [20] WANY Y, ZHUANG G S, ZHANG X Y, et al. The ion chemistry, seasonal cycle, and sources of PM2.5 and TSP aerosol in Shanghai[J].Atmospheric Environment,2006,40(16):2935-2952 [21] CHEN L W, CHOW J C, DODDRIDGE B G, et al. Analysis of a summertime PM2.5 and haze episode in the mid-Atlantic refion[J].Journal of the Air Waste Management Association,2003,53(8):946-956 期刊类型引用(13)
1. 喻恒,李忠勤,周茜,张昕,蒋慧敏,王芳龙,罗雨甜. 金昌市PM_(2.5)的化学组分特征及来源分析. 环境化学. 2024(04): 1188-1203 . 百度学术
2. 刘芳盈,李平,刘晓利,杨淑霞,张殿平. 淄博市大气PM_(10)暴露与人群非意外死亡的时空特征与健康风险评估. 环境与健康杂志. 2024(04): 302-306 . 百度学术
3. 潘玉锁,章宜洁,许文娟. 安庆市PM_(2.5)碳质组分污染特征及来源解析. 中国环境监测. 2023(06): 38-46 . 百度学术
4. 陈璐瑶,于阳春,黄小娟,董贵明,张军科. 减排背景下成都大气PM_(2.5)碳质组分特征. 环境科学. 2022(09): 4438-4447 . 百度学术
5. 刘明月. 我国大气细颗粒物中水溶性离子的研究进展. 清洗世界. 2021(01): 119-122 . 百度学术
6. 曹佳阳,樊晋,罗彬,张巍,杜云松,张莹,王式功. 川南四座城市PM_(2.5)化学组分污染特征及其源解析. 环境化学. 2021(02): 559-570 . 百度学术
7. 冯婷,蔡一鸣,李振亮,杨复沫,王锋文. 重庆市典型城区PM_(2.5)含碳气溶胶季节变化和来源解析. 环境科学学报. 2021(05): 1703-1717 . 百度学术
8. 徐雪梅,冯小琼,陈军辉,尹寒梅,张懿,刘政. 成都市主城区PM_(2.5)碳组分污染特征分析. 环境化学. 2021(08): 2481-2492 . 百度学术
9. 黄含含,王羽琴,李升苹,陈庆彩. 西安市PM_(2.5)中水溶性离子的季节变化特征. 环境科学. 2020(06): 2528-2535 . 百度学术
10. 吴芸芸,王子豪,李群英,和晋渝,张春华,沈卓之. 2014—2018年重庆市主要城区大气PM_(2.5)水平与居民非意外死亡的关系. 环境与职业医学. 2020(08): 735-740 . 百度学术
11. 蒋镇,赵美艳. 重庆城区大气细颗粒物浓度特征及其与气象因子的关系. 气象研究与应用. 2020(03): 38-42 . 百度学术
12. 张文娟,李敏,付华轩,葛璇,吕波,王治非,李海滨. 济南市PM_(2.5)化学组分及污染特征分析. 环境污染与防治. 2019(12): 1490-1494 . 百度学术
13. 任驿佳. 基于数据挖掘的空气污染原因分析. 内蒙古科技与经济. 2018(09): 52-53 . 百度学术
其他类型引用(13)
-

计量
- 文章访问数: 2036
- HTML全文浏览数: 1747
- PDF下载数: 449
- 施引文献: 26