-
《全球及中国污泥处理处置行业发展研究报告》指出,2018年,中国污泥总产量为 5.67×107 t,随着城市化进程的加快,预计到2020年,中国污泥总产量将达到6.18×107 t。产生的大量污泥给污泥的处理工作带来了很大的压力,而且传统的焚烧和填埋等处理方式越来越不能满足处置理念的升级和环境相关管理政策的规定[1]。目前,污泥减量化和资源化是污泥处理处置领域的研究热点之一,通过污泥破解的预处理方式能够实现污泥的资源化和减量化的目标[2]。污泥破解的过程是将污泥絮体内部及表面的胞外聚合物(EPS)破坏,使得细胞壁破裂,胞内有机物溶出的过程[3]。热碱破解法是最常用的方法之一,但该法用碱量大,需要大量能量输入(一般大于100 ℃)[4-6],因此,在污泥资源化大规模处理中,其大量使用受到了限制。
近年来,为了增强污泥破解效果,国内外学者对常用的热碱破解法进行了各种尝试性优化和改进。DEMIR[7]采用The Box-Behnken实验对热碱法破解污泥的参数做了优化,在90 ℃,0.2 mol·L−1 NaOH和25 min破解条件下,污泥最佳破解率为77.83%。DENG等[8]采用响应面优化法对热碱法破解污泥的工艺做了参数优化,在90 ℃、104 min、pH=12的最优条件下,污泥的破解率可达46.45%,破解后甲烷产率比原污泥提高了79%。徐慧敏等[9]将超声和热碱技术联合,找到了最佳的破解工艺组合:温度为73.06 ℃、加碱量为0.085 g(以1 g湿污泥计),超声能量为9 551 kJ·kg−1。徐慧敏等[10]进一步采用超声联合热碱法破解不同含固率的污泥,对有机质释放情况进行了研究,提出污泥含固率为10%时,溶解性蛋白质和多糖浓度的释放最多。
除对热碱法进行中低温下的参数优化和物理方面的改进外,进一步尝试化学等其他改进方向的探索是有必要的。乙二胺四乙酸(EDTA)是一种较强的螯合剂,能够改变微生物的细胞结构,促进细胞胞外物质与污泥细胞的分离,故经常被用到污泥EPS的溶解提取中[11-12]。ZOU等[13]在研究废活性污泥在厌氧发酵过程中发现,通过添加EDTA可以增强细胞内磷的释放,经研究表明,这是因为EDTA对细胞膜的损伤所致。NGUYEN等[14]在污泥厌氧发酵中使用EDTA后显著减少了污泥量。肖倩等[15]利用EDTA法对硝化污泥胞外紧密型EPS进行了提取,发现EDTA对紧密型EPS具有一定溶解作用。以上这些研究结果表明EDTA对EPS具有一定的溶解破坏作用,可以造成细胞膜的损伤。本研究尝试将EDTA和热碱法进行耦合,在中低温度条件下,考察EDTA对热碱破解污泥效果的影响,为强化污泥热碱破解提供方法参考。
热碱-EDTA耦合法强化污泥破解及效果分析
Strengthening sludge disintegration by thermal alkali-EDTA coupling method and its effect analysis
-
摘要: 采用热碱-EDTA耦合法进一步提升热碱法破解污泥的效果,以期减少碱量和热能的消耗。选用影响污泥破解效果的pH、温度和EDTA投加量等因素设计L16(45)的正交实验,在得出最佳污泥破解条件下,对比考察了热碱法和热碱-EDTA耦合法破解污泥的效果。结果表明,热碱-EDTA耦合法相比热碱破解法,破解后SCOD、TN、TP、多糖和蛋白质溶出量分别提高了14.7%、5.6%、9.9%、3.6%和25.9%,污泥残渣中VS的含量(21.93%)也小于热碱破解法(29.68%),破解液中分子质量小于400 Da的小分子物质占比(40.68%)大于热碱破解的对应结果(32.34%)。通过污泥粒径测定和SEM观察发现,热碱-EDTA耦合法破解的污泥粒径分布峰值响应小于热碱破解,污泥固体分散性优于热碱破解。通过分析可知,热碱-EDTA耦合法可以提高中低温条件下热碱破解的有机物溶出率和有机物水解性能,降低污泥残渣中VS的相对含量,热碱-EDTA耦合法相比热碱法强化了污泥的破解效果。Abstract: The thermal alkali-EDTA coupling method was used to further disintegrate the sludge, in order to reduce the consumption of alkali and heat energy. The orthogonal test of L16(45) was designed with five factors e.g., pH, temperature, solid-liquid ratio, reaction time and EDTA dosage, which affected the sludge disintegration effect. Under the optimized sludge disintegration conditions, the effects of the sludge disintegration were compared between the thermal alkali and the thermal alkali-EDTA coupling methods. The results showed that compared with the thermal alkali disintegration treatment, the release amounts of SCOD, TN, TP, polysaccharide and protein from thermal alkali-EDTA coupling disintegrated sludge increased by 14.7%, 5.6%, 9.9%, 3.6% and 25.9%, respectively. The thermal alkali-EDTA coupling disintegration led to less VS content in the residual sludge than that by the thermal alkali disintegration (21.93% versus 29.68%). Besides, the proportion of small molecule (<400 Da) in the lysate by the thermal alkali-EDTA coupling disintegration was higher than that by the thermal alkali disintegration (40.68% versus 32.34%). Sludge floc size measurement and SEM observation demonstrated that thermal alkali-EDTA coupling disintegrated sludge had smaller response value in sludge particle size distribution and better flocs dispersion than the thermal alkali disintegration. The above results indicated that the thermal alkali-EDTA coupling method can improve the dissolution rate and the hydrolysis property of organic matter under the medium and low temperature conditions, and further reduce the relative VS content in sludge residue. Obviously, the thermal alkali-EDTA coupling method can strengthen the sludge disintegration effect compared with the thermal alkali method and show a promising prospect.
-
表 1 热碱-EDTA耦合法破解污泥的正交实验设计及结果
Table 1. Orthogonal test design and results of thermal alkali-EDTA coupling method for disintegration sludge
实验编号 pH 温度/℃ 固液比 反应时间/h EDTA质量
(以1 g湿污泥计)/gSCOD/(mg·L−1) 1 11.5 75 1∶8.5 2.5 0.008 8 832.0 2 11.5 80 1∶10 3 0.011 9 826.4 3 11.5 85 1∶11.5 3.5 0.014 8 396.0 4 11.5 90 1∶13 4 0.017 8 332.0 5 12 75 1∶10 3.5 0.017 10 051.2 6 12 80 1∶8.5 4 0.014 10 692.8 7 12 85 1∶13 2.5 0.011 8 096.0 8 12 90 1∶11.5 3 0.008 8 543.2 9 12.5 75 1∶11.5 4 0.011 10 851.2 10 12.5 80 1∶13 3.5 0.008 7 854.4 11 12.5 85 1∶8.5 3 0.017 14 400.0 12 12.5 90 1∶10 2.5 0.014 12 980.8 13 13 75 1∶13 3 0.014 9 862.4 14 13 80 1∶11.5 2.5 0.017 10 156.8 15 13 85 1∶10 4 0.008 12 500.8 16 13 90 1∶8.5 3.5 0.011 13 414.4 kDD1 8 846.6 9 899.2 11 834.8 10 016.4 9 432.6 kDD2 9 345.8 9 632.6 11 339.8 10 658.0 10 547.0 kDD3 11 521.6 10 848.2 9 486.8 9 929.0 10 483.0 kDD4 11 483.6 10 817.6 8 536.2 10 594.2 10 735.0 极差DD 2 675.0 1 215.6 3 298.6 729.0 1 302.4 主次因素 II IV I V III 最佳水平 12.5 85 1∶8.5 3 0.17 -
[1] 王文中. 石家庄市工业污泥防治研究[D]. 石家庄: 河北科技大学, 2014. [2] 江云, 朱曙光, 欧阳匡中, 等. 超声破解对剩余污泥内含营养物及粒径的影响[J]. 环境工程学报, 2018, 12(5): 31-37. [3] XIE Y H, LU Y, LIU C Q, et al. Impact of early treatment of sludge on measurement of its total sugar[J]. Environmental Science & Technology, 2014, 37(4): 156-160. [4] LI C X, ZHANG G Y, ZHANG Z K, et al. Alkaline thermal pretreatment at mild temperatures for biogas production from anaerobic digestion of antibiotic mycelial residue[J]. Bioresource Technology, 2016, 20: 49-57. [5] ZHONG W Z, LI G X, GAO Y, et al. Enhanced biogas production from penicillin bacterial residue by thermal-alkaline pretreatment[J]. Biotechnology & Biotechnological Equipment, 2015, 29(3): 522-529. [6] 李洋洋, 金宜英, 李欢, 等. 碱热联合破解污泥效果及动力学研究[J]. 中国环境科学, 2010, 30(9): 1230-1234. [7] DEMIR O. Performance of thermophilic anaerobic sludge digester after alkaline-assisted thermal disintegration optimization using response surface methodology[J]. Water and Environment Journal, 2018, 32(4): 597-606. doi: 10.1111/wej.v32.4 [8] DENG Q H, HUANG Y Z, XIAN P, et al. Optimization of thermo-alkaline pretreatment on municipal sludge and enhanced subsequent anaerobic digestion[J]. Desalination and Water Treatment, 2019, 148: 88-94. doi: 10.5004/dwt [9] 徐慧敏, 秦卫华, 何国富, 等. 超声联合热碱技术促进剩余污泥破解的参数优化[J]. 中国环境科学, 2017, 37(9): 3431-3436. doi: 10.3969/j.issn.1000-6923.2017.09.029 [10] 徐慧敏, 秦卫华, 李中林, 等. 超声联合热碱破解高含固污泥的理化性质变化[J]. 生态与农村环境学报, 2018, 34(5): 469-473. doi: 10.11934/j.issn.1673-4831.2018.05.012 [11] BOURVEN I, COSTA G, GUIBAUD G. Qualitative characterization of the protein fraction of exopolymeric substances (EPS) extracted with EDTA from sludge[J]. Bioresource Technology, 2012, 104: 486-496. doi: 10.1016/j.biortech.2011.11.033 [12] KAVITHA S, KUMAR S A, YOGALAKSHMI K N, et al. Effect of enzyme secreting bacterial pretreatment on enhancement of aerobic digestion potential of waste activated sludge interceded through EDTA[J]. Bioresource Technology, 2013, 150: 210-219. doi: 10.1016/j.biortech.2013.10.021 [13] ZOU J T, ZHANG L L, WANG L, et al. Enhancing phosphorus release from waste activated sludge containing ferric or aluminum phosphates by EDTA addition during anaerobic fermentation process[J]. Chemosphere, 2017, 171: 601-608. doi: 10.1016/j.chemosphere.2016.12.113 [14] NGUYEN M T, YASIN N H M, MIYAAKI T, et al. Enhancement of sludge reduction and methane production by removing extracellular polymeric substances from waste activated sludge[J]. Chemosphere, 2014, 117: 552-558. doi: 10.1016/j.chemosphere.2014.08.055 [15] 肖倩, 杨垒, 任勇翔, 等. 硝化污泥胞外聚合物分层组分提取方法的比较[J]. 环境科学学报, 2018, 38(8): 3045-3053. [16] 罗毅, 李晓丽, 刘晖, 等. 超声波、碱、超声波/碱预处理污泥对污泥水解效果的影响[J]. 河北工业科技, 2015, 32(6): 552-556. [17] 李海玲, 李冬, 张杰, 等. 调控温度和沉降时间实现ANAMMOX颗粒快速启动及其稳定运行[J]. 环境科学, 2019, 40(2): 837-844. [18] LI X J, ZHU T, ZHANG K, et al. Enhanced sludge degradation process using a microbial electrolysis cell in an up-flow anaerobic sludge blanket reactor with ultrasound treatment[J]. Chemical Engineering Journal, 2016, 306: 17-21. doi: 10.1016/j.cej.2016.07.017 [19] GAYATHRI T, KAVITHA S, KUMAR S A, et al. Effect of citric acid induced deflocculation on the ultrasonic pretreatment efficiency of dairy waste activated sludge[J]. Ultrasonics Sonochemistry, 2015, 22: 333-340. doi: 10.1016/j.ultsonch.2014.07.017 [20] 艾乐仙, 邓风, 胡潇鹏, 等. 超声波-高锰酸钾耦合工艺对污泥破解效果的研究[J]. 现代化工, 2019, 39(3): 171-175.