-
近年来,世界各国将开发新能源汽车作为一项极为重要的工作。中国科技部“863”计划中启动电动汽车专项这一措施推动了电动汽车产业的快速发展,与此同时,也促进了动力电池产业的发展[1]。预计到2020年,我国的纯电动汽车年产量将会超过2×106 辆,产销量累计将达到5×106 辆[2]。这预示着报废的动力锂电池的数量必将大幅度增长。预测到2020年,中国的报废电池量将达到5×105 t[3]。废旧动力电池含有贵重金属和电解液有机溶剂等,若随意丢弃或不妥当处理,不仅对周围环境造成严重的破坏,同时也会造成废旧电池中钴、锂和镍等有价金属的流失,可见废旧电池的回收在资源回收的同时也减少了对环境的污染[4]。
目前,锂电池回收的方法主要有酸浸取工艺、电化学工艺和生物浸取工艺等。电化学工艺浸出时,对电解液组成成分要求比较高且耗电量较大,生物浸取工艺中,在较高的金属浓度下细菌容易中毒失活,导致浸出效率受到了限制,同时,培养菌类要求条件苛刻且菌种易受到污染,最终导致浸出效率低[5]。酸浸取工艺一般分为有机酸和无机酸,无机酸一般采用H2SO4[6]、HCl[7]和HNO3[8]配合H2O2作为还原剂,无机酸在浸取的过程中会产生硫氧化物、氮氧化物和氯化物等有毒气体,对环境造成二次污染,同时H2SO4、HCl和HNO3都是强酸,具有强腐蚀性,对设备要求较高,因此,近年来人们探索采用有机酸来代替无机酸,如苹果酸(C6H4O5)[9]、草酸(H2C2O4)[10]、琥珀酸(C4H6O4)[11]、柠檬酸(C6H8O7)[12-13]和抗坏血酸(C6H8O6)[14]等。
蔡乐等[15]采用1 mol·L−1的稀H2SO4与质量分数为30%的H2O2浸出体系,在90 ℃条件下,反应1 h,然后在浸出液中加入K2S2O8,继续反应3 h,从而制得α型MnO2颗粒。实现三元锂电池的正极材料中Ni、Co和Li的浸出及Mn的回收。有研究[16]利用C6H8O7、dl-C6H4O5、H2C2O4、C2H4O2等不同有机酸从废锂离子电池中回收Co和Li的环保工艺。采用响应面法(RSM)对固液比、温度、酸浓度、有机酸类型、H2O2浓度等浸出参数进行了优化。根据优化过程得到的结果,温度被认为是影响最大的参数。LI等[17]采用1.25 mol·L−1 C6H8O7和10% H2O2,固液比为20 g·L−1,90 ℃条件下反应1 h,,H2O2添加时间间隔为30 min,从废旧锂电池中提取了近100%的Li和90%以上的Co,实现锂电池正极材料中Co和Li的浸出。CHEN等[18]用4 mol·L−1 H2SO4和10% H2O2体系85 ℃条件下反应2 h,固液比为1∶10,Co和Li的浸出效率分别为95%和96%。通过调节pH,析出浸出液中Fe(Ⅲ)、Cu(Ⅱ)、Mn(Ⅱ)杂质离子。 然后用皂化P507(2-乙基己基膦酸单-2-乙基己基酯)从纯化水相中选择性地提取Co(Ⅱ),并在条状液中以H2C2O4的形式进行化学沉积制备CoC2O4,CoC2O4的产率为93%。MENG等[19]将废旧LiCoO2分散于20 mL的1.25 mol·L−1 C6H4O5和0.3 mol·L−1 C6H12O6混合溶液中,温度为80 ℃,浸出时间为180 min。最终Co和Li的浸出效率分别达到99.87%和100%。紧接着向浸出液中添加摩尔比为1.15的(NH4)2C2O4,调节pH为2.0,在55 ℃下反应40 min,可分离出98%的Co。为了消除强酸在浸出反应过程中的二次污染问题,我们在不牺牲高浸出效率的前提下,寻找了强酸的替代品。C6H8O6是一种廉价易得的有机酸[20],为乙烯基羧酸以及温和的还原性有机酸,在浸出过程中,反应比较温和[21]。C6H8O6的工业生产已有80多年的历史。大多数商业生产的C6H8O6是通过传统的七步赖希斯坦法合成的[22]。近年来,C6H8O6的生产技术得到了进一步发展,这不仅提高了C6H8O6的生产效率,也降低了生产成本[23-24]。
针对三元锂电池的回收提出以C6H8O6为浸出剂和还原剂,直接浸出废旧三元锂电池正极材料中的Co、Mn、Li和Ni有价金属,同时添加H2SO4和KMnO4简便快速地制备β-CoC2O4·2H2O颗粒的方法。溶液中过量的C6H8O6在强氧化剂(KMnO4)的作用下生成脱水抗坏血酸,进而生成二酮古洛糖酸,二酮古洛糖酸继续被氧化,最终氧化成草酸[25],草酸参与反应回收Co[26]。由于剩余的抗坏血酸在溶液中被氧化消耗,即减少了废液中的有机酸含量。实现正极材料中有价金属的有效浸出和Co的回收。
废旧锂电池正极材料LiNi1/3Co1/3Mn1/3O2中钴的回收
Recovery of cobalt from the LiNi1/3Co1/3Mn1/3O2 cathode of waste lithium-ion batteries
-
摘要: 随着新能源汽车工业的快速发展,废旧三元动力锂电池的量在不断地增加。三元动力锂电池中含有丰富的Co、Mn、Li和Ni资源,回收三元动力锂电池是防止环境污染和回收贵重金属的理想选择。利用抗坏血酸(C6H8O6)的酸性和还原性对废旧三元锂电池正极材料进行浸出,KMnO4的强氧化性回收浸出液中的Co制备β-CoC2O4·2H2O,采用浓度为1.3 mol·L−1的C6H8O6,在60 ℃的条件下对正极材料浸出20 min,向浸出夜中加入1 mol·L−1的H2SO4反应20 min后加入KMnO4继续反应1 h,制得β-CoC2O4·2H2O。实验结果表明,Co的回收率达91%,Li的浸出率可达96.4%,Mn和Ni完全浸出,可实现简单环保地浸出有价金属并回收Co。
-
关键词:
- 废旧三元锂电池 /
- 正极材料 /
- 浸出 /
- C6H8O6 /
- β-CoC2O4·2H2O
Abstract: With the rapid development of new energy automobile industry, the amount of waste ternary lithium batteries is continuously increasing. These batteries contained abundant resource of Co, Mn, Li and Ni. Therefore, recycling the ternary lithium battery is a good choice to prevent environmental pollution and recover precious metals. In this study, based on the acidic and reduction properties, ascorbic acid were used to leach the cathode materials of waste ternary lithium batteries. Then KMnO4 was used as oxidant to recovery the Co element in leaching solution and prepare β-CoC2O4·H2O. Cathode materials were leached with 1.3 mol·L−1 ascorbic acid at 60 ℃ for 20 min, then 1 mol·L−1 H2SO4 was added into the leaching solution and stir for 20 min. At last, KMnO4 was added and continued to react for 1 h for β-CoC2O4·H2O preparation. The results showed that the Co recovery rate reached 91%, and the leaching rates of Mn, Ni and Li were 100%, 100% and 96.4%, respectively. Therefore, simple, environmentally and friendly leaching of valuable metals and recovery of Co element could be realized.-
Key words:
- waste ternary lithium batteries /
- cathode materials /
- leaching /
- C6H8O6 /
- β-CoC2O4·2H2O
-
-
[1] 蔡乐, 王继芬. 废旧汽车三元锂电池安全放电影响因素探究[J]. 上海第二工业大学报, 2017, 34(2): 101-105. [2] 国务院关于印发节能与新能源汽车产业发展规划(2012—2020年)的通知[EB/OL]. [2019-04-01]. http://www.gov.cn/xxgk/pub/govpublic/mrlm/201207/t20120709_65317.html. [3] 杨光, 张鹏, 钟岸, 等. 废旧锂离子动力电池的回收研究进展[J]. 广东化工, 2018, 45(5): 139-141. doi: 10.3969/j.issn.1007-1865.2018.05.064 [4] 丁欣. 废旧锂离子电池正极材料资源化综合利用[J]. 能源研究与管理, 2018(2): 14-16. [5] 高桂兰, 贺欣, 李亚光, 等. 废旧车用动力锂离子电池的回收利用现状[J]. 环境工程, 2017, 35(10): 140-145. [6] HE L, SUN S, SONG X, et al. Leaching process for recovering valuable metals from the LiNi1/3Co1/3Mn1/3O2 cathode of lithium-ion batteries[J]. Waste Management, 2017, 64: 171-181. doi: 10.1016/j.wasman.2017.02.011 [7] JOULIE M, LAUCOURNET R, BILLY E. Hydrometallurgical process for the recovery of high value metals from spent lithium nickel cobalt aluminum oxide based lithium-ion batteries[J]. Journal of Power Sources, 2014, 247: 551-555. doi: 10.1016/j.jpowsour.2013.08.128 [8] ZHANG X H, XIE Y B, LIN X, et al. An overview on the processes and technologies for recycling cathodic active materials from spent lithium-ion batteries[J]. Journal of Material Cycles and Waste Management, 2013, 15: 420-430. doi: 10.1007/s10163-013-0140-y [9] LI L, DUNN J B, ZHANG X X, et al. Recovery of metals from spent lithium-ion batteries with organic acids as leaching reagents and environmental assessment[J]. Journal of Power Sources, 2013, 233: 180-189. doi: 10.1016/j.jpowsour.2012.12.089 [10] ZENG X, LI J, SHEN B. Novel approach to recover cobalt and lithium from spent lithium-ion battery using oxalic acid[J]. Journal of Hazardous Materials, 2015, 295: 112-118. doi: 10.1016/j.jhazmat.2015.02.064 [11] LI L, QU W, ZHANG X, et al. Succinic acid-based leaching system: A sustainable process for recovery of valuable metals from spent Li-ion batteries[J]. Journal of Power Sources, 2015, 282: 544-551. doi: 10.1016/j.jpowsour.2015.02.073 [12] LU Y, YONG F, XI G. A new method for the synthesis of LiNi1/3Co1/3-Mn1/3O2 from waste lithium ion batteries[J]. RSC Advances, 2015, 55(5): 44107-44114. doi: 10.1039/C4RA16390G [13] HU J, ZHANG J, LI H, et al. A promising approach for the recovery of high value-added metals from spent lithium-ion batteries[J]. Journal of Power Sources, 2017, 351: 192-199. doi: 10.1016/j.jpowsour.2017.03.093 [14] 刘贵清, 王芳. 锂离子动力电池湿法回收工艺研究现状[J]. 中国资源综合利用, 2018, 36(5): 88-92. doi: 10.3969/j.issn.1008-9500.2018.05.028 [15] 蔡乐, 王继芬, 高瑞. 废旧三元锂电池正极材料的金属浸出[J]. 环境工程学报, 2018, 12(6): 1833-1842. doi: 10.12030/j.cjee.201711215 [16] GOLMOHAMMADZADEH R, RASHCHI F, VAHIDI E. Recovery of lithium and cobalt from spent lithium-ion batteries using organic acids: Process optimization and kinetic aspects[J]. Waste Management, 2017, 244: 224-254. [17] LI L, GE J, WU F, et al. Recovery of cobalt and lithium from spent lithium ion batteries using organic citric acid as leachant[J]. Journal of Hazardous Materials, 2010, 176(1): 288-293. [18] CHEN L, TANG X, ZHANG Y, et al. Process for the recovery of cobalt oxalate from spent lithium-ion batteries[J]. Hydrometallurgy, 2011, 108(1/2): 80-86. [19] MENG Q, ZHANG Y, DONG P. A combined process for cobalt recovering and cathode material regeneration from spent LiCoO2 batteries: Process optimization and kinetics aspects[J]. Waste Management, 2017, 71: 372-380. [20] ARRIGONI O, TULLIO M C D. Ascorbic acid: Much more than just an antioxidant[J]. Biochimica Et Biophysica Acta, 2002, 1569(1/2/3): 1-9. [21] MEREDITH P. The oxidation of ascorbic acid and its improver effect in bread doughs[J]. Journal of the Science of Food & Agriculture, 2010, 16(8): 474-480. [22] LI L, LU J, REN Y, et al. Ascorbic acid assisted recovery of cobalt and lithium from spent Li-ion batteries[J]. Journal of Power Sources, 2012, 218: 21-27. doi: 10.1016/j.jpowsour.2012.06.068 [23] BREMUS C, HERRMANN U, BRINGER-MEYER S, et al. The use of microorganisms in L-ascorbic acid production[J]. Journal of Biotechnology, 2006, 124(1): 196-205. doi: 10.1016/j.jbiotec.2006.01.010 [24] HANCOCK R D, VIOLA R. Biotechnological approaches for L-ascorbic acid production[J]. Trends in Biotechnology, 2002, 20(7): 299-305. doi: 10.1016/S0167-7799(02)01991-1 [25] BORSOOK H, DAVENPORT H W, JEFFREYS C E P, et al. The oxidation of ascorbic acid arid its reduction in vitro and in vivo[J]. Journal of Biological Chemistry, 1937, 117(1): 237-279. [26] 徐明晗, 宋杰光, 富伟, 等. 沉淀法制备草酸钴及其粒度对钴蓝颜料性能的影响[J]. 硅酸盐通报, 2014, 33(12): 3182-3185.