-
聚乙烯醇(PVA)通过聚醋酸乙烯酯水解制得,是一种具有良好性能且可生物降解的水溶性聚合物[1]。PVA因其良好的水溶性,粘附性,耐磨性和强韧性等优良的性能,被广泛用于农用地膜,纺织上浆和食品包装等行业[2]。PVA具有较大的表面活性,因此,大量降解缓慢的PVA广泛存在于自然界中,造成水体和泥土富氧、生态环境危害和生物链的破坏[1, 3]。许多研究报道了处理PVA的物理和化学的方法,如吸附法[4]、化学凝固法[5]、超声波降解法[6]、膜过滤法[7]和催化氧化法[8]。但这些方法成本较高且可能造成二次污染,而生物降解法更加高效和经济,因此,筛选高效降解菌和优化降解方式对于减少PVA污染而言具有重要意义[9]。
自1973年首株能够降解PVA的假单胞菌(Pseudomonas O-3)[10]被分离出以来,大量关于PVA降解菌的研究被报道。从染料厂废水中分离出的鞘氨醇盒菌(Sphingopyxis sp. PVA3)在6 d的培养中,对初始浓度为1 g·L−1 PVA的降解率达到90%[11]。粪产碱菌(Alcaligenes faecalis KK314)降解PVA的机理被详细报道,PVA上的羟基首先被氧化为β-羟基酮,然后被进一步水解为甲基酮类化合物和羧酸类化合物[12]。放线菌委内瑞拉链霉菌(Streptomyces venenzuelae GY1)能产生降解PVA的诱导型胞外酶[13]。地霉 (Geotrichum WF9101)对低分子质量的PVA具有降解的活性[14]。青霉菌(Penicillium sp. WSH02-21)能在12 d内将PVA降解完全,且能够分泌过氧化氢酶,防止氧化PVA过程中产生的过氧化氢对细胞产生损害[15]。共生降解也被广泛研究,其主要分为2种模式。首先是MORI等[16]报道的2种菌株共代谢,2株菌都不分泌生长因子。另外一种模式由SAKAZAWA等[17]提出。其中1株菌分泌生长因子,其他菌利用这种生长因子进行聚合物降解,如假单胞菌(Pseudomonas sp.VM15C)和恶臭假单胞菌(Pseudomonas putida VM15A)[18],新鞘氨醇菌(Novosphingobium sp.) 和黄色杆菌(Xanthobacter flavus)等[19]。由于PVA降解菌广泛存在于自然界[20],因此,进一步筛选高效菌并研究降解特性就具有独特意义。本研究通过对聚乙烯醇材料堆肥,研究了材料表面的生物多样性变化,并且从经历了3年降解的PVA材料表面筛选到了能独立降解PVA的苏云金芽孢杆菌(Bacillus thuringiensis sp.),命名为DG01。对DG01进行了摇瓶降解实验和呼吸降解实验,并对其降解特性进行了研究。
聚乙烯醇生物降解菌群的结构分析及优势菌株降解特性
Analysis of microbial community structure of poly(vinyl acohol) degradation and the degradation characteristics of the dominant strain
-
摘要: 对堆肥中降解聚乙烯醇材料的微生物菌群结构进行了分析。结果表明:降解聚乙烯醇材料的优势菌群属于芽胞杆菌科(Bacillaceae)。从降解了3年的材料表面筛选出了1株聚乙烯醇降解菌DG01,鉴定为苏云金杆菌(Bacillus thuringiensis sp.)。分别以聚乙烯醇(poly(vinyl alcohol),PVA)浓度和二氧化碳排放量为指标,对PVA的降解动力学进行了研究。结果表明:PVA生物降解过程符合一级动力学模型,R2分别为0.984 0和0.983 5。对摇瓶培养条件进行了单因素优化实验。最佳降解温度,初始pH和酵母粉浓度分别为41 ℃、7和1.40 g·L−1。优化后,48 h内PVA初始浓度为3 g·L−1的降解率达到了45.21%,提高了2.10倍。Abstract: Microbial community structure of degrading ploy (vinyl alcohol) material during the compost burial course was analyzed. The results showed that Bacillaceae was the dominant bacteria in the microbial community for ploy (vinyl alcohol) material degradation. A PVA degrading bacterial strain DG01 was isolated from PVA materials surface after three-year degradation, and was identified as Bacillus thuringiensis sp. Taking PVA concentration of and CO2 emission as indicators, the PVA degradation kinetics was explored. Results showed that PVA degradation process fitted well with the pseudo-first-order kinetic model. The correlation coefficients R2 were 0.984 0 and 0.983 5, respectively. PVA degradation conditions were optimized with single-factor experimental design under shaking flask culture. The optimum conditions for PVA biodegradation were 41 ℃, initial pH 7 and yeast concentration of 1.40 g·L−1. For PVA with 3 g·L−1 initial concentration, the corresponding degradation rate reached 45.21% within the first 48 h, which increased by 2.10 times.
-
表 1 不同降解时间的微生物群落丰富度和多样性指数
Table 1. Community richness and diversity indices of microbes at different degradation time
降解时间/a Chao1 Simpson OTUs/个 1 868 0.265 604 2 873 0.276 556 3 580 0.583 427 -
[1] CHIELLINI E, CORTI A, D'ANTONE S, et al. Biodegradation of poly (vinyl alcohol) based materials[J]. Progress in Polymer Science, 2003, 28(6): 963-1014. doi: 10.1016/S0079-6700(02)00149-1 [2] SHIMAO M. Biodegradation of plastics[J]. Current Opinion in Biotechnology, 2001, 12(3): 242-247. doi: 10.1016/S0958-1669(00)00206-8 [3] KAWAI F, HU X. Biochemistry of microbial polyvinyl alcohol degradation[J]. Applied Microbiology and Biotechnology, 2009, 84(2): 227-237. doi: 10.1007/s00253-009-2113-6 [4] CHIELLINI E, CORTI A, POLITI B, et al. Adsorption/desorption of polyvinyl alcohol on solid substrates and relevant biodegradation[J]. Journal of Polymers and the Environment, 2000, 8(2): 67-79. doi: 10.1023/A:1011569920349 [5] RODRIGUES C S D, MADEIRA L M, RUI A R B. Treatment of textile dye wastewaters using ferrous sulphate in a chemical coagulation/flocculation process[J]. Environmental Technology, 2013, 34(6): 719-729. doi: 10.1080/09593330.2012.715679 [6] TAGHIZADEH M T, MEHRDAD A. Calculation of the rate constant for the ultrasonic degradation of aqueous solutions of polyvinyl alcohol by viscometry[J]. Ultrasonics Sonochemistry, 2003, 10(6): 309-313. doi: 10.1016/S1350-4177(03)00110-X [7] HARRUDDIN N, ORTHMAN N, ANDELINE L E S, et al. Selective removal and recovery of black B reactive dye from simulated textile wastewater using the supported liquid membrane process[J]. Environmental Technology, 2015, 36(3): 271-280. doi: 10.1080/09593330.2014.943301 [8] MAKSIMOVA N I, KRIVORUCHKO O P. Study of thermocatalytic decomposition of polyethylene and polyvinyl alcohol in the presence of an unsteady-state Fe-containing catalyst[J]. Chemical Engineering Science, 1999, 54(20): 4351-4357. doi: 10.1016/S0009-2509(99)00160-8 [9] 邱咏梅. 高级氧化预处理及生物法联合降解PVA的研究[D]. 青岛: 青岛科技大学, 2009. [10] SUZUKI T, ICHIHARA Y, YAMADA M, et al. Some characteristics of Pseudomonas 0-3 which utilizes polyvinyl alcohol[J]. Journal of the Agricultural Chemical Society of Japan, 2008, 37(4): 747-756. [11] YAMATSU A, MATSUMI R, ATOMI H, et al. Isolation and characterization of a novel poly(vinyl alcohol)-degrading bacterium: Sphingopyxis sp. PVA3[J]. Applied Microbiology and Biotechnology, 2006, 72(4): 804-811. doi: 10.1007/s00253-006-0351-4 [12] MATSUMURA S, TOMIZAWA N, TOKI A, et al. Novel poly(vinyl alcohol)-degrading enzyme and the degradation mechanism[J]. Macromolecules, 1999, 32(23): 7753-7761. doi: 10.1021/ma990727b [13] ZHANG Y, LI Y, SHEN W, et al. A new strain, Streptomyces venezuelae GY1, producing a poly(vinyl alcohol)-degrading enzyme[J]. World Journal of Microbiology and Biotechnology, 2006, 22(6): 625-628. doi: 10.1007/s11274-005-9081-5 [14] MORI T, SAKIMOTO M, KAGI T, et al. Secondary alcohol dehydrogenase from a vinyl alcohol oligomer-degrading Geotrichum fermentans: Stabilization with Triton X-100 and activity toward polymers with polymerization degrees less than 20[J]. World Journal of Microbiology and Biotechnology, 1998, 14(3): 349-356. doi: 10.1023/A:1008857026443 [15] QIAN D, DU G, CHEN J. Isolation and culture characterization of a new polyvinyl alcohol-degrading strain: Penicillium sp. WSH02-21[J]. World Journal of Microbiology and Biotechnology, 2004, 20(6): 587-591. doi: 10.1023/B:WIBI.0000043172.83610.08 [16] MORI T, SAKIMOTO M, KAGI T. Isolation and characterization of a strain of Bacillus megaterium that degrades poly(vinyl alcohol)[J]. Bioscience, Biotechnology, and Biochemistry, 1996, 60(2): 330-332. doi: 10.1271/bbb.60.330 [17] SAKAZAWA C, SHIMAO M, TANIGUCHI Y, et al. Symbiotic utilization of polyvinyl alcohol by mixed cultures[J]. Applied and Environmental Microbiology, 1981, 41(1): 261-267. [18] SHIMAO M, FUKUTA I, KATO N, et al. Mixed continuous cultures of polyvinyl alcohol-utilizing symbionts Pseudomonas putida VM15A and Pseudomonas sp. strain VM15C[J]. Applied and Environmental Microbiology, 1984, 48(4): 751-754. [19] RONG D, USUI K, MOROHOSHI T, et al. Symbiotic degradation of polyvinyl alcohol by Novosphingobium sp. and Xanthobacter flavus[J]. Journal of Environmental Biotechnology, 2009, 9(2): 131-134. [20] 宋朝霞, 张颖, 钱鼎, 等. 聚乙烯醇降解酶产生菌的筛选及生物多样性初探[J]. 食品与生物技术学报, 2005, 24(4): 100-103. doi: 10.3321/j.issn:1673-1689.2005.04.022 [21] FINLE Y, JOSEPH H. Spectrophotometric determination of polyvinyl alcohol in paper coatings[J]. Analytical Chemistry, 1961, 33(13): 1925-1927. doi: 10.1021/ac50154a044 [22] 刘文娜, 吴文良, 王秀斌, 等. 不同土壤类型和农业用地方式对土壤微生物量碳的影响[J]. 植物营养与肥料学报, 2006, 12(3): 406-411. doi: 10.3321/j.issn:1008-505X.2006.03.020 [23] 王伏伟, 王晓波, 李金才, 等. 施肥及秸秆还田对砂姜黑土细菌群落的影响[J]. 中国生态农业学报, 2015, 23(10): 1302-1311. [24] HU X P, MAMOTO R, SHIMOMURA Y, et al. Cell surface structure enhancing uptake of polyvinyl alcohol (PVA) is induced by PVA in the PVA-utilizing Sphingopyxis sp. strain 113P3[J]. Archives of Microbiology, 2007, 188(3): 235-241. doi: 10.1007/s00203-007-0239-4 [25] 肖建军, 李亚龙, 杨琦. 苯降解菌的筛选及其对苯的降解研究[J]. 环境工程, 2018, 36(6): 159-162. [26] WEI Y, FU J, WU J, et al. Bioinformatics analysis and characterization of highly efficient polyvinyl alcohol (PVA)-degrading enzymes from the novel PVA degrader Stenotrophomonas rhizophila QL-P4[J]. Applied and Environmental Microbiology, 2017, 84(1): 1817-1898.