-
病毒是一类由遗传物质(脱氧核糖核酸(DNA)或核糖核酸(RNA))和蛋白质组成的生物大分子,其利用宿主细胞内的代谢系统来进行自身繁殖。病毒种类繁多,国际病毒分类委员会(International Committee on Taxonomy of Viruses,ICTV)认定的病毒分类系统中以目、科、属、种为分类单元,目前已发现并鉴定的病毒有近5 000种。医学上按照临床症状将病毒分为肺部感染病毒、胃肠道感染病毒(包括腺病毒、轮状病毒、冠状病毒、星状病毒、诺如病毒等)、肝炎病毒、皮肤感染病毒和肿瘤病毒等(见图1)。值得注意的是,肺部感染病毒(通过呼吸飞沫、气溶胶传播)、胃肠道感染病毒(通过食物、饮水传播)2种分类中均含有冠状病毒,说明冠状病毒存在通过饮用水及其形成的气溶胶为介质感染人体的风险[1]。
2019年末,在我国湖北省武汉市暴发的COVID-19新型冠状病毒疫情为我国公共卫生安全敲响了警钟。新冠病毒的暴发与流行严重威胁我国乃至全球居民身体的健康[2]。及时、有效地阻断病毒的传播途径是控制疫情蔓延的关键环节。虽然尚无实验结果直接证实病毒可通过粪-口传播,但由于在确诊患者粪便中多次检测到病毒核酸物质[3],表明除已明确的飞沫传播方式外,很可能存在水体传播的潜在风险,需引起环保监管部门、给排水行业、科研人员与公众的足够重视。
在1947年,美国已从排入纽约市河流的污水中检测出脊髓灰质炎病毒,并认为与当时纽约脊髓灰质炎的流行病相关[4]。随着病毒检测方法的发展,饮用水中病毒污染以及由其导致的传染病的流行逐渐进入公众视野。饮用水的消毒是20世纪公共卫生领域的创举之一,是饮用水微生物安全风险控制的必要措施。常见的饮用水消毒技术包括投加化学消毒剂(如氯、氯胺、二氧化氯和臭氧等)、物理紫外线辐射等[5]。美国环保署(USEPA)的《国家饮用水水质标准》规定,饮用水中病毒检出应为零;在实际的水处理中则参考世界卫生组织(WHO)绩效目标的限值方式,要求饮用水处理工艺对肠道病毒灭活率达到4个对数单位(即99.99%)[6]。20世纪饮用水消毒工艺的应用有效控制了水中致病微生物对人体的健康风险。
饮用水消毒工艺对病毒的灭活
Inactivation of virus by drinking water disinfection process
-
摘要: 饮用水中的病毒会引发人体健康风险,故消毒是饮用水生物安全的重要屏障。为了比较不同消毒工艺对病毒的灭活效果,在总结水介质中常见病毒的种类及特性的基础上,围绕当前饮用水处理中广泛应用的消毒工艺(氯、氯胺、臭氧、二氧化氯、紫外线),梳理了各种消毒工艺的原理、影响因素、消毒效果及实际应用中的问题。鉴于消毒工艺进水水质对病毒灭活效果影响较大,且饮用水常规、深度处理工艺均可直接、间接强化对病毒的去除效果,故提出“常规处理+深度处理+消毒”协同高效运行的饮用水多级屏障处理工艺,以有效控制病毒等致病微生物引发的饮用水水质风险。Abstract: Occurrence of virus in drinking water may induce human health risk. Disinfection is an important barrier for biological safety in drinking water. To compare the inactivation effect of virus induced by different disinfecting processes, the types and characteristics of common viruses detected in aqueous media were firstly introduced, then this study focused on the disinfection processes (free chlorine, chloramine, ozone, chlorine dioxide, ultraviolet) widely used in drinking water treatment process, and reviewed their disinfection mechanisms, impact factors, effects and potential problems during applications. In addition, the influent water quality usually has a significant effect on the virus inactivation, and both the conventional and advanced drinking water treatment processes can enhance the removal efficiency of virus directly and indirectly, thus the multistage barrier process with the coordinated and efficient operation ‘conventional treatment-advanced treatment-disinfection’ was proposed to effectively control the drinking water quality risk induced by viruses and other pathogenic microorganism.
-
Key words:
- drinking water /
- virus /
- inactivation /
- disinfection /
- multistage barrier processes
-
表 1 水介质中常见病毒的种类及特性
Table 1. Types and characteristics of viruses widely detected in aqueous media
病毒 分子生物学特征 潜伏期/d 感染症状 免疫持久性 肠道病毒 单股正链RNA病毒,衣壳二十面体立体对称,
无包膜,直径20~30 nm2~14 肠胃病、中枢神经损害、
心肌损害持久特异性免疫 诺如病毒 单股正链RNA病毒,球形,二十面体对称,
无包膜,直径约40 nm1~2 急性腹泻 < 1 a 甲型肝炎病毒 单股正链RNA病毒,二十面体立体对称,
无包膜,直径约27 nm15~45 发烧、恶心、腹部不适、
肝炎症状终身免疫 腺病毒 双链DNA病毒,二十面体对称,
无包膜,直径约80 nm2~21 呼吸道疾病、肠胃炎、
眼球感染同型病毒的持久
免疫轮状病毒 双链RNA病毒,3层二十面体的蛋白质壳体,
无包膜,直径约70 nm2~3 发烧、呕吐、腹泻 同型病毒的非持久
免疫冠状病毒 单股正链RNA病毒,多形,有包膜,
包膜上存在棘突,直径80~200 nm2~14 发热、肠胃病、咳嗽、
呼吸系统感染可重复感染,
免疫较困难 -
[1] CASANOVA L, RUTALA W A, WEBER D J, et al. Survival of surrogate coronaviruses in water[J]. Water Research, 2009, 43(7): 1893-1898. doi: 10.1016/j.watres.2009.02.002 [2] LI Q, GUAN X, WU P, et al. Early transmission dynamics in Wuhan, China of novel coronavirus-infected pneumonia[J]. The New England Journal of Medicine, 2020, 382: 1199-1207. doi: 10.1056/NEJMoa2001316 [3] HOLSHUE M L, DEBOLT C, LINDQUIST S, et al. First case of 2019 novel coronavirus in the United States[J]. The New England Journal of Medicine, 2020, 382: 929-936. doi: 10.1056/NEJMoa2001191 [4] 陈学敏, 杨克敌. 现代环境卫生学[M]. 2版. 北京: 人民卫生出版社, 2008. [5] GALL A M, MARINAS B J, LU Y, et al. Waterborne viruses: A barrier to safe drinking water[J]. Plos Pathogens, 2015, 11(6): e1004867. doi: 10.1371/journal.ppat.1004867 [6] United State Environmental Protection Agency. National primary drinking water regulations: EPA 816-F-09-004[S]. 2009. [7] 李丹. 水中病毒分析方法及水处理过程病毒去除特性研究[D]. 北京: 清华大学, 2010. [8] EISCHEID A C, THURSTON J A, LINDEN K G. UV disinfection of adenovirus: Present state of the research and future directions[J]. Critical Reviews in Environmental Science and Technology, 2011, 41(15): 1375-1396. doi: 10.1080/10643381003608268 [9] HIRNEISEN K A, BLACK E P, CASCARINO J L, et al. Viral inactivation in foods: A review of traditional and novel food-processing technologies[J]. Comprehensive Reviews in Food Science and Food Safety, 2010, 9(1): 3-20. doi: 10.1111/j.1541-4337.2009.00092.x [10] WYN-JONES A P, SELLWOOD J. Enteric viruses in the aquatic environment[J]. Journal of Applied Microbiology, 2001, 91(6): 945-962. doi: 10.1046/j.1365-2672.2001.01470.x [11] Office of Drink Water, United States Environmental Protection Agency. The guidance manual for compliance with the filtration and disinfection requirements for public water systems using surface water sources: EPA 68-01-6989[S]. 1990. [12] KAHLER A M, CROMEANS T L, ROBERTS J M, et al. Effects of source water quality on chlorine inactivation of adenovirus, coxsackievirus, echovirus, and murine norovirus[J]. Applied and Environmental Microbiology, 2010, 76(15): 5159-5164. doi: 10.1128/AEM.00869-10 [13] CROMEANS T L, KAHLER A M, HILL V R. Inactivation of adenoviruses, enteroviruses, and murine norovirus in water by free chlorine and monochloramine[J]. Applied and Environmental Microbiology, 2010, 76(4): 1028-1033. doi: 10.1128/AEM.01342-09 [14] PAGE M A, SHISLER J L, MARINAS B J. Kinetics of adenovirus type 2 inactivation with free chlorine[J]. Water Research, 2009, 43(11): 2916-2926. doi: 10.1016/j.watres.2009.03.047 [15] SCARPINO P V, BERG G, CHANG S L, et al. Comparative study of inactivation of viruses in water by chlorine[J]. Water Research, 1972, 6(8): 959-965. doi: 10.1016/0043-1354(72)90047-4 [16] TEUNIS P F M, XU M, FLEMING K K, et al. Enteric virus Infection risk from intrusion of sewage into a drinking water distribution network[J]. Environmental Science & Technology, 2010, 44(22): 8561-8566. [17] RACHMADI A T, KITAJIMA M, KATO T, et al. Required chlorination doses to fulfill the credit value for disinfection of enteric viruses in water: A critical review[J]. Environmental Science & Technology, 2020, 54(4): 2068-2077. [18] SIRIKANCHANA K, SHISLER J L, MARINAS B J. Effect of exposure to UV-C irradiation and monochloramine on adenovirus serotype 2 early protein expression and DNA replication[J]. Applied and Environmental Microbiology, 2008, 74(12): 3774-3782. doi: 10.1128/AEM.02049-07 [19] SIRIKANCHANA K, SHISLER J L, MARINAS B J. Inactivation kinetics of adenovirus serotype 2 with monochloramine[J]. Water Research, 2008, 42(6/7): 1467-1474. [20] KAHLER A M, CROMEANS T L, ROBERTS J M, et al. Source water quality effects on monochloramine inactivation of adenovirus, coxsackievirus, echovirus, and murine norovirus[J]. Water Research, 2011, 45(4): 1745-1751. doi: 10.1016/j.watres.2010.11.026 [21] THURSTON-ENRIQUEZ J A, HAAS C N, JACANGELO J, et al. Inactivation of enteric adenovirus and feline calicivirus by chlorine dioxide[J]. Applied and Environmental Microbiology, 2005, 71(6): 3100-3105. doi: 10.1128/AEM.71.6.3100-3105.2005 [22] LI J W, XIN Z T, WANG X W, et al. Mechanisms of inactivation of hepatitis A virus in water by chlorine dioxide[J]. Water Research, 2004, 38(6): 1514-1519. doi: 10.1016/j.watres.2003.12.021 [23] XUE B, JIM M, YANG D, et al. Effects of chlorine and chlorine dioxide on human rotavirus infectivity and genome stability[J]. Water Research, 2013, 47(10): 3329-3338. doi: 10.1016/j.watres.2013.03.025 [24] ALVAREZ M E, OBRIEN R T. Mechanisms of inactivation of poliovirus by chlorine dioxide and iodine[J]. Applied and Environmental Microbiology, 1982, 44(5): 1064-1071. doi: 10.1128/AEM.44.5.1064-1071.1982 [25] CHEN Y S, VAUGHN J M. Inactivation of human and simian rotaviruses by chlorine dioxide[J]. Applied and Environmental Microbiology, 1990, 56(5): 1363-1366. doi: 10.1128/AEM.56.5.1363-1366.1990 [26] HOIGNE J, BADER H. Ozonation of water-role of hydroxyl radicals as oxidizing intermediates[J]. Science, 1975, 190(4216): 782-784. doi: 10.1126/science.190.4216.782 [27] WOLF C, VON GUNTEN U, KOHN T. Kinetics of inactivation of waterborne enteric viruses by ozone[J]. Environmental Science & Technology, 2018, 52(4): 2170-2177. [28] SHIN G A, SOBSEY M D. Reduction of Norwalk virus, poliovirus 1, and bacteriophage MS2 by ozone disinfection of water[J]. Applied and Environmental Microbiology, 2003, 69(7): 3975-3978. doi: 10.1128/AEM.69.7.3975-3978.2003 [29] VAUGHN J M, CHEN Y S, LINDBURG K, et al. Inactivation of human and simian rotaviruses by ozone[J]. Applied and Environmental Microbiology, 1987, 53(9): 2218-2221. doi: 10.1128/AEM.53.9.2218-2221.1987 [30] GERBA C P, GRAMOS D M, NWACHUKU N. Comparative inactivation of enteroviruses and adenovirus 2 by UV light[J]. Applied and Environmental Microbiology, 2002, 68(10): 5167-5169. doi: 10.1128/AEM.68.10.5167-5169.2002 [31] BATTIGELLI D A, SOBSEY M D, LOBE D C. The inactivation of hepatitis A virus and other model viruses by UV irradiation[J]. Water Science and Technology, 1993, 27(3/4): 339-342. [32] EICKMANN M, GRAVEMANN U, HANDKE W, et al. Inactivation of Ebola virus and Middle East respiratory syndrome coronavirus in platelet concentrates and plasma by ultraviolet C light and methylene blue plus visible light, respectively[J]. Transfusion, 2018, 58(9): 2202-2207. doi: 10.1111/trf.14652 [33] HIJNEN W A M, BEERENDONK E F, MEDEMA G J. Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: A review[J]. Water Research, 2006, 40(1): 3-22. doi: 10.1016/j.watres.2005.10.030 [34] KALLENBACH N R, CORNELIUS P A, NEGUS D, et al. Inactivation of viruses by ultraviolet light[J]. Current Studies in Hematology and Blood Transfusion, 1989, 56: 70-82. [35] ZHANG C M, XU L M, XU P C, et al. Elimination of viruses from domestic wastewater: Requirements and technologies[J]. World Journal of Microbiology & Biotechnology, 2016, 32(4): 69. [36] WIGGINTON K R, PECSON B M, SIGSTAM T, et al. Virus inactivation mechanisms: Impact of disinfectants on virus function and structural integrity[J]. Environmental Science & Technology, 2012, 46(21): 12069-12078. [37] TEUNIS P F M, XU M, FLEMING K K, et al. Enteric virus infection risk from intrusion of sewage into a drinking water distribution network[J]. Environmental Sciences & Technology, 2010, 44: 8561-8566. [38] GUNDY P M, GERBA C P, PEPPER I L. Survival of coronaviruses in water and wastewater[J]. Food and Environmental Virology, 2009, 1(1): 10-14. doi: 10.1007/s12560-008-9001-6 [39] WANG X W, LI J, GUO T, et al. Concentration and detection of SARS coronavirus in sewage from Xiao Tang Shan hospital and the 309th Hospital of the Chinese People’s Liberation Army[J]. Water Science and Technology, 2005, 52(8): 213-221. doi: 10.2166/wst.2005.0266