-
燃料乙醇是我国重点发展的新能源之一,其生产废水的处理和资源化利用很受关注[1]。燃料乙醇的生产以稻谷为原料,经过发酵、精馏后的酒糟通过简单的挤压处理后,所得滤渣经干燥后进入干酒糟工艺(distillers dried grains,DDG)处理流程[2]。产生废水主要成分为糖类、蛋白质、纤维素等,其中粗蛋白含量约占27%[3]。该废水经厌氧生物处理后,TN主要以
$ {\rm{NH}}_4^ + $ -N形式存在,且浓度较高,一般为300~600 mg·L−1;即使经过好氧硝化反应也仅发生氮形态的变化,而出水TN未降低,这主要是由于好氧进水碳氮比失调导致反硝化反应效果差。为实现TN达标排放,需要在好氧系统段补充进水碳源。影响反硝化效率的因素较多,活性污泥中微生物组成种类也会影响碳源的选择。在调整脱氮系统工艺前,通过在现场开展指导性实验,研究投加不同碳源时的反硝化脱氮效率,以期获得适宜的碳源补充方案,提高A/O反硝化系统脱氮效率。本研究从脱氮反应速率和经济性综合分析以选择适宜的碳源,并优化运行条件,应用于工程实践中,指导DDG废水处理的A/O脱氮系统高效运行。
基于碳源条件的燃料乙醇生产废水脱氮工艺优化
Optimization of denitrification treatment process of fuel ethanol wastewater based on carbon source
-
摘要: 某厂稻谷燃料乙醇DDG废水处理工艺因好氧进水碳氮比失调,导致出水TN难以达标。通过对反硝化系统碳源种类的筛选,寻找适宜的碳源并对废水处理系统工艺进行调整,以提升反硝化脱氮效率。碳源筛选实验在葡萄糖、乙醇和清液(原废水),3种碳源条件下进行。通过考察实验系统pH和TN浓度的变化,对反硝化系统投加不同碳源时TN去除速率,以及相应碳源条件下的运行成本进行对比。结果表明:乙醇作为碳源时系统的TN去除速率最大,为8.33 mg·(L·h)−1,是清液为碳源时的1.1倍、葡萄糖为碳源时的1.18倍;而清液作为碳源的运行成本是乙醇为碳源的9%、葡萄糖为碳源的37%。综合对比反硝化投加不同碳源情况下的脱氮反应速率和运行成本,以清液作为碳源来调整脱氮工艺是最佳方案。经现场工艺验证,当A/O系统进水TN为300~600 mg·L−1、投加清液量使废水中COD/TN达到12.1以上时,可确保该厂废水处理系统经处理外排废水TN稳定在50 mg·L−1以下。上述研究结果可为DDG废水的处理提供经济合理的碳源补充方案,并能为可生化性较好的发酵行业废水处理提供参考。
-
关键词:
- 稻谷燃料乙醇DDG废水 /
- TN /
- 反硝化 /
- 碳源
Abstract: The C/N ratio in the A/O influent of the the rice fuel ethanol DDG wastewater treatment process in a plant was too low to meet the the discharge standard of total nitrogen for the effluent. In this study, the carbon sources in the denitrification system were screened, and a suitable carbon source was determined and the wastewater treatment process was adjusted for the increase of denitrification efficiency. The carbon source screening test was conducted among the three carbon sources of glucose, ethanol and clear liquid (raw wastewater). The changes of pH value and total nitrogen concentration in the the reaction system were invetigated, then the total nitrogen removal rates and operating costs were compared when different carbon sources are added to the denitrification system. The results showed that the when ethanol was taken as carbon source, the fastest removal rate of total nitrogen occurred with a value of 8.33 mg·(L·h)−1, which was 1.1 or 1.18 times of the carbon source of glucose or clear liquid (raw wastewater), respectively. The operating cost with the carbon source of raw wastewater was 9% of ethanol and 37% of glucose, respectively. Through the comprehensive analysis and comparison of denitrification reaction rate and operating cost among different carbon sources additions for denitrification, the best choice was to add raw wastewater to adjust A/O denitrification process in this wastewater treatment plant. After verification in field process, when the total nitrogen in the influentt of A/O system was about 300~600 mg·L−1 and the COD/TN ratio in the wastewater was above 12.1 by adding raw wastewater, the effluent total nitrogen concentration could be stablized lower than 50 mg·L−1. The research provides an economic and reasonable carbon supplement scheme for DDG wastewater treatment, and provides a reference for fermentation wastewater treatment with good biodegradability.-
Key words:
- rice fuel ethanol DDG wastewater /
- total nitrogen /
- denitrification /
- carbon source
-
表 1 水质指标汇总
Table 1. Quality and flow indicators of wastewater
水样及标准 水量/(m3·d−1) COD/(mg·L−1) SS/(mg·L−1) TN/(mg·L−1) $ {\rm{NH}}_4^ + $ -N/(mg·L−1)清液 1 800~2 100 45 000~65 000 5 000~8 000 13 00~16 00 10~23 低浓度水 360~400 100~200 20~80 30~50 5~10 出水标准 — 100 60 50 10 表 2 A/O系统进出水水质
Table 2. Water quality index of A/O system
mg·L−1 阶段 COD TN TNK $ {\rm{NH}}_4^ + {\text{-}}{\rm{N}}$ A/O进水 1530~2300 480~560 476~556 394~462 A/O出水 450~610 378~410 15~23 未检出 表 3 3种碳源的TN去除速率
Table 3. Removal rate of total nitrogen with addition of three carbon sources
反应时间/h TN去除速率/(mg·(L·h)−1) 葡萄糖 乙醇 清液 12 0.38 1.10 3.15 24 0.20 0.20 7.56 36 7.06 5.30 3.98 48 6.58 8.33 0 平均值 3.55 3.73 3.67 表 4 3种不同碳源运行成本对比
Table 4. Comparison of operation costs among three different carbon sources
碳源 单位时间碳源
投加量/(kg·h−1)单位TN碳源
投加量/(kg·kg−1)单位体积废水增加的
运行成本/(元·t−1)备注 葡萄糖 1 620 20.3 24.3 葡萄糖市场价格为3 000元·t−1 乙醇 3 348 41.9 100.4 乙醇市场价格为6 000元·t−1 清液 47 787 587.0 9.0 投加清液减少沼气发电收益,该厂
清液发电收益为28.6元·m−3清液 -
[1] 黄宇彤, 杜连祥, 赵继湘. 世界燃料酒精生产形势[J]. 酿酒, 2001, 28(5): 24-26. doi: 10.3969/j.issn.1002-8110.2001.05.002 [2] 谢林. 玉米酒精生产新技术[M]. 北京: 中国轻工业出版社, 2000. [3] 张欣, 王少惠. 酒糟废水处理工程设计[J]. 给水排水, 2001, 27(3): 65-67. doi: 10.3969/j.issn.1002-8471.2001.03.021 [4] 杨健, 周小波. 酒精废水消化液生物硝化和脱氮试验[J]. 环境工程, 2006, 24(1): 27-30. doi: 10.3969/j.issn.1000-8942.2006.01.007 [5] 张仲玲. 反硝化脱氮外加碳源的选择[D]. 哈尔滨: 哈尔滨工业大学, 2010. [6] 尹志轩, 谢丽, 周琪, 等. 碳源性质和COD/ $ {\rm{NO}}_3^ - $ -N对硝酸盐还原途径的影响[J]. 工业水处理, 2018, 38(5): 58-61. doi: 10.11894/1005-829x.2018.38(5).058[7] 周小波, 杨健. 缺氧/好氧SBR工艺去除酒精废水中的氮[J]. 工业用水与废水, 2006, 37(6): 27-30. doi: 10.3969/j.issn.1009-2455.2006.06.008 [8] 聂静. 酒精废水厌氧消化液深度处理研究[D]. 上海: 同济大学, 2007. [9] AKUNNA J C, BIZEAU C, MOLETTA R. Nitrate reduction by anaerobic sludge using glucose at various nitrate concentrations: Ammonification, denitrification and methanogenic activities[J]. Environmental Technology, 1994, 15(1): 41-49. doi: 10.1080/09593339409385402 [10] 李基东. 反硝化脱氮补充碳源选择与研究[D]. 上海: 同济大学, 2007. [11] 杨从发. 木薯酒精废糟培养小球藻工艺及灵芝生物转化小球藻的研究[D]. 无锡: 江南大学, 2009. [12] 贺延龄. 废水的厌氧生物处理[M]. 北京: 中国轻工业出版社, 2002. [13] 林炜. 有机氮在厌氧及好氧生化条件下氨化效果的研究[D]. 杭州: 浙江工业大学, 2017. [14] 胡国山, 张建美, 蔡惠军, 等. 碳源、C/N和温度对生物反硝化脱氮过程的影响[J]. 科学技术与工程, 2016, 16(14): 74-77. doi: 10.3969/j.issn.1671-1815.2016.14.015 [15] 吴代顺, 桂丽娟, 陈晓志, 等. 不同类型碳源及其投加量对污泥反硝化的影响研究[J]. 兰州交通大学学报, 2012, 31(3): 99-103. doi: 10.3969/j.issn.1001-4373.2012.03.024