-
我国畜禽粪便污染物总量已达近40×108 t,有效处理量不足50%,其中猪粪占总量比最大,为36.71%[1-4]。清粪工作是解决规模化猪场环境污染的重要内容。在清粪工艺中,干清粪工艺具有机械化程度高、粪中营养成分损失小、耗水量少、可减少污水中大部分污染物(以COD与BOD类指标表征)等优势[5-6]。从清洁生产角度考虑,干清粪工艺是规模化猪场清理猪粪时的首选[7]。干清粪工艺得到的猪粪固含量高、水分含量少,后续输送特别是管道抽吸过程中难度较大。这是由于猪粪含固率变化导致其黏性变化,从而影响了管内流动阻力。因此,对流动黏性阻力这一物理特性进行专门研究是很有必要的,其对运输、搅拌、混合等传质传热过程[8-10]同样有重要影响,属于基础性工艺设计因素。
国内外许多学者对畜禽粪污或类似物料的流变特性和输送性能已有过研究。石惠娴等[10]验证了猪粪为非牛顿流体中的假塑性流体,可使用幂律模型描述切应力与剪切速率之间的关系。LANDRY等[11]拟合了猪粪稠度系数与含固率的函数关系,建立特定剪切速率条件下表观黏度与含固率的函数表达式。刘刈等[12]考察了包括猪粪在内的6种畜禽养殖场废弃物悬浮分散系的流变特性,研究了物料浓度、温度和发酵时间等因素对粪污黏度的影响,以及猪粪表观黏度随温度的变化趋势,分析了颗粒溶解到液相使其浓度增大并产生表观黏度增大的现象。王少勇等[13]测试不同工况下膏体管道输送的黏度-剪切速率流动曲线,采用Herschel-Bulkey模型进行回归分析,获得了管道输送膏体的流变参数。刘晓辉等[14]对具有非牛顿流体特性的膏体尾矿进行管道输送关键工艺参数研究,实现了对膏体在管内流动时流动阻力的精确测算。
然而,对畜禽粪污在管道抽吸过程的非牛顿流体流动阻力特性的研究还较少,还需考虑各种浓度、抽吸压力、抽吸管径及自然放置时间等关键影响因素,并进行系统地理论分析,以便为相关的环保工艺与设备研发提供设计参数。本研究以实验为基础,分析在猪粪管道抽吸过程中影响抽吸流量的主要因素,以及猪粪在管道内流动时非牛顿流体阻力特性的影响机理,以期为畜禽粪污环保处理等相关领域提供参考。
猪粪在管道抽吸过程中的非牛顿流体流动阻力特性
Resistance characteristics of non-Newtonian fluid flow in the process of pipe suction of pig manure
-
摘要: 为解决高浓度猪粪收集转运等过程涉及的基础性技术问题,以不同浓度猪粪为研究对象,探讨了含固率、真空度、管径及自然放置时间等参数对管道抽吸流量和非牛顿流体流动阻力特性的影响。结果表明:猪粪含固率由2%增加到20%,其流变指数由0.952 3降至0.300 4,抽吸流量随猪粪含固率增加而减少;抽吸流量与管径呈幂指增长关系,当猪粪的非牛顿流体特性增强时,管径是影响管道黏性阻力的重要因素;抽吸流量的平均降低率随自然放置时间不断增加,15 d后降低率为8.3%,25 d后达到26.2%;对于管道抽吸猪粪而言,高含固率(>16%)条件下实验范宁摩擦因子快速变大,说明此时不再适合抽吸;管道流动特征表现为高范宁摩擦因子(0.006 6~3.020 0)和低雷诺数(10~2 435)的层流特征。以上研究结果可为畜禽粪污环保处理等相关领域提供参考。Abstract: In order to solve the fundamental technical problems involved in the process of collecting and transporting high-concentration pig manure, the pig manure with different concentrations was taken as the research object, the influences of solid content, vacuum degree, pipe diameter, and natural placement time on the pipe suction flow and resistance characteristics of non-Newtonian fluid flow were investigated. The results showed that the rheological index decreased from 0.952 3 to 0.300 4 with the increase of solid content from 2% to 20%, the suction flow also decreased. The suction flow rate increased exponentially with pipe diameter, and the pipe diameter became an important factor for affecting viscous resistance when the non-Newtonian fluid characteristic of pig manure increased. The average reduction of the suction flow increased with natural placement time, it increased from 8.3% to 26.2% when natural placement time extended from15 days to 25 days. For pipe suction of pig manure, the experimental Fanning friction factor increased rapidly at high solid content over 16%, indicating that it was no longer suitable for pipe suction; the pipe flow characteristics belongs to laminar flow with a high Fanning friction factor (0.006 6~3.020 0) and a low Reynolds number (10~2 435). This study can provide important basic guidance data for related fields such as the environmental protection of livestock manure.
-
Key words:
- pig manure /
- pipe suction /
- non-Newtonian fluid /
- Fanning friction factor
-
[1] 浦绍瑞, 钱红亮, 马春燕, 等. 畜禽粪便高温发酵与秸秆热化学处理工艺的耦合[J]. 化工学报, 2015, 66(6): 2220-2226. [2] 黎运红. 畜禽粪便资源化利用潜力研究[D]. 武汉: 华中农业大学, 2015. [3] 王成显, 张艺臻, 吴淑娜, 等. 含固率和电极间距对牛粪发酵产电性能的影响[J]. 环境工程学报, 2016, 10(1): 485-489. doi: 10.12030/j.cjee.20160180 [4] 仇焕广, 井月, 廖绍攀, 等. 我国畜禽污染现状与治理政策的有效性分析[J]. 中国环境科学, 2013, 33(12): 2268-2273. [5] 郑苇, 刘淑玲, 靳俊平. 不同清粪工艺下猪、牛、鸡养殖场粪水和污水厌氧消化技术探讨[J]. 环境卫生工程, 2017, 25(5): 58-60. doi: 10.3969/j.issn.1005-8206.2017.05.018 [6] 张庆东, 耿如林, 戴晔. 规模化猪场清粪工艺比选分析[J]. 中国畜牧兽医, 2013, 40(2): 232-235. doi: 10.3969/j.issn.1671-7236.2013.02.057 [7] 刘安芳, 阮蓉丹, 李厅厅, 等. 猪舍内粪污废弃物和有害气体减量化工程技术研究[J]. 农业工程学报, 2019, 35(15): 200-210. doi: 10.11975/j.issn.1002-6819.2019.15.025 [8] EI-MASHAD H M, LOON W K P, ZEEMAN G, et al. Rheological properties of dairy cattle manure[J]. Bioresource Technology, 2005, 96(5): 531-535. doi: 10.1016/j.biortech.2004.06.020 [9] WU B, CHEN S. CFD simulation of non-Newtonian fluid flow in anaerobic digesters[J]. Biotechnology and Bioengineering, 2008, 99(3): 700-711. doi: 10.1002/bit.21613 [10] 石惠娴, 吕涛, 朱洪光, 等. 猪粪流变特性与表观黏度模型研究[J]. 农业机械学报, 2014, 45(2): 188-193. doi: 10.6041/j.issn.1000-1298.2014.02.031 [11] LANDRY H, LAGUE C, ROBERGE M. Physical and rheological properties of manure products[J]. Applied Engineering in Agriculture, 2004, 20(3): 277-288. doi: 10.13031/2013.16061 [12] 刘刈, 邓良伟, 王智勇. 几种厌氧消化原料的流变特性及其影响因素[J]. 农业工程学报, 2009, 25(8): 204-209. doi: 10.3969/j.issn.1002-6819.2009.08.037 [13] 王少勇, 吴爱祥, 阮竹恩, 等. 基于环管实验的膏体流变特性及影响因素[J]. 中南大学学报, 2018, 49(10): 2519-2525. [14] 刘晓辉, 吴爱祥, 姚建, 等. 膏体尾矿管内滑移流动阻力特性及其近似计算方法[J]. 中国有色金属学报, 2019, 29(10): 2403-2410. [15] 姚玉英, 陈常贵, 柴诚敬. 化工原理[M]. 天津: 天津大学出版社, 2004. [16] REID J D, CAMPANELLA O H, CORVALAN C M, et al. The influence of power-law rheology on flow distributions in coathanger manifolds[J]. Polymer Engineer and Science, 2003, 43(3): 693-703. doi: 10.1002/pen.10057 [17] 张严之, 王卉, 张翼, 等. 高含固污泥中影响因素对流变特性的影响[J]. 环境工程学报, 2016, 10(12): 7255-7259. doi: 10.12030/j.cjee.201507101 [18] HU L, XU H, LI M, et al. Liquid jet formation during a suspended liquid suction process[J/OL]. [2020-03-01]. Experimental Thermal and Fluid Science, 2019: https://doi.org/10.1016/j.expthermflusci.2019.109952. [19] PÉREZ-GARCÍA J, GARCÍA A, HERRERO-MARTÍN R, et al. Experimental correlations on critical Reynolds numbers and friction factor in tubes with wire-coil inserts in laminar, transitional and low turbulent flow regimes[J]. Experimental Thermal & Fluid Science, 2018, 91: 64-79. [20] HONG C, NAKAMURA T, ASAKO Y, et al. Semi-local friction factor of turbulent gas flow through rectangular microchannels[J]. International Journal of Heat and Mass Transfer, 2016, 98: 643-649. doi: 10.1016/j.ijheatmasstransfer.2016.02.080 [21] OGUGBUE C C. Laminar and turbulent friction factors for annular flow of drag-reducing polymer solutions in coiled-tubing operations[J]. SPE Drilling & Completion, 2011, 26(4): 506-518. [22] 王杰祥, 张翼, 孙颖婷, 等. 井下注聚管径对聚合物溶液流动影响[J]. 中国矿业, 2019, 28(5): 57-61. [23] YILMAZ N A, TESTIK F Y, CHOWDHURY MIJANUR R. Laminar bottom gravity currents: Friction factor-Reynolds number relationship[J]. Journal of Hydraulic Research, 2014, 52(4): 545-558. doi: 10.1080/00221686.2013.878402