-
燃煤火力电厂是国内电力的基础负载主力,其烟气排放主要包括粒状污染物及气状污染物2类。粒状污染物主要为飞灰,气状污染物则分为氮氧化物(NOx)及硫氧化物(SO2) 2种。各种污染物的排放标准因设备种类及地区性的差异而不同。一般燃煤火电厂550 MW燃烧器锅炉排放的飞灰质量浓度约为1 100~10 000 mg·m−3,NOx质量浓度约为400~600 mg·m−3,SO2质量浓度可达900~ 3 000 mg·m−3[1-4]。目前,国内外燃煤电厂常见的处理工艺是选择性催化还原设备(selective catalytic reduction,SCR),实际应用中常常会串联静电集尘器及除硫系统以来保证排放达标,但往往会增加处理与管理的复杂性。
燃煤电厂烟气控制技术中常见的SCR催化剂是将活性催化相(TiO2、V2O5、Pt等金属)负载于蜂巢式、平板式、柱状式滤材或滤袋等反应器中[5-9]。该领域的研究重点集中在不同活性及抗毒化特性催化剂的制备方法[10-13]。研究中一般采用模拟的单一气体或少数混合气体,侧重探讨反应机理。反应中高质量浓度颗粒物对催化剂的影响研究并不多见。前述反应器虽然对高灰环境有一定忍受度,但随着操作时间的增加会出现催化剂表面物理失活(deactivation)及磨耗(erosion)现象[6]。为减少颗粒物对催化剂活性的影响,可考虑将颗粒床反应器与SCR催化剂协同使用,以达到同时处理气状和粒状污染物的目标。
颗粒床除尘设备[14-18]具有下列优势:1)高热/质传系数,高气/固、固/固接触面积及连续操作等特点;2)可避免类似固定床反应器的堵塞现象;3)相对于蜂窝状反应器,气体流量的变化对污染物与反应器的接触效率较不敏感。因此,本研究结合CuO/活性炭(activated carbon,AC)催化剂对NO与SO2的控制[19-23]及颗粒床反应器对飞灰的过滤能力,并通过改变模拟粒状物的粒径、成分,探讨模拟烟气环境下协同工艺的操作参数,以期达到同时去除NO、SO2及飞灰的目标。
颗粒床过滤/催化反应器协同处理模拟烟气中的气-固相污染物
Simultaneous removal of gas-solid phase pollutants in flue gases by granular bed catalytic/filtration reactor
-
摘要: 制备了应用于颗粒床过滤/催化反应器中的氧化铜/活性炭催化剂(CuO/ AC),并探究其协同去除模拟烟气中气-固相污染物(如NO、SO2及飞灰等)的效果。结果表明:协同催化/过滤NO、SO2和飞灰的去除效率分别为50%~61%、69%~81%和89%~99%;当CuO/AC催化剂吸收SO2转换成CuSO4-CuO/AC催化剂时,对NO的还原能力得以提升。利用BET和FESEM/EDS考察了飞灰对协同去除污染物的影响,发现细颗粒(约为 4 μm)会阻塞并减少催化剂表面和孔洞体积,并轻微降低催化剂对NO和SO2的去除效率。造成前述现象的原因可能是颗粒床反应器床质的磨耗行为提高了催化剂在烟尘环境下的负荷能力。颗粒床过滤/催化反应器具有协同处理气状及粒状污染物的潜力。
-
关键词:
- 协同去除 /
- 烟尘 /
- 一氧化氮 /
- 二氧化硫 /
- 颗粒床过滤/催化反应器
Abstract: This study investigated the potential of utilizing a granular bed catalyst/filtration reactor (used CuO/AC catalyst) for simultaneous removal of gas-solid phase pollutants (NO, SO2, and fly ash) in simulated flue gas. Results showed that the simultaneous catalytic/filtration rates of NO, SO2, and fly ash was 50%~61%, 69%~81%, and 89%~99%, respectively by granular bed catalytic/filtration reactor. In addition, results also showed increased NO conversion with the formation of CuSO4-CuO/ AC. BET and FESEM/EDS results showed that fine ash particles (about 4 μm) can obstruct and reduce the catalyst surface area and pores. Because of the erosion, the catalyst with granular bed reactor has high tolerance ability of fly ash. Therefore, the granular bed catalyst reactor has the potential to simultaneous control both gaseous and particulate impurities.-
Key words:
- simultaneous removal /
- fly ash /
- NO /
- SO2 /
- granular bed filtration/catalytic reactor
-
表 1 协同去除前后催化剂的BET分析结果
Table 1. Physical characteristics of fresh and reacted CuO/AC catalysts
样品 比表面积/(m2·g−1) V微孔/(cm3·g−1) V介孔/(cm3·g−1) V巨孔/(cm3·g−1) V总孔/(cm3·g−1) CuO/AC 1 044.1 0.485 6 0.103 3 0.006 8 0.595 7 4 μm Al2O3 1 022.1 0.522 5 0.072 1 0.007 2 0.601 3 40 μm Al2O3 1 100.8 0.528 6 0.075 1 0.007 3 0.611 1 4 μm SiO2 951.3 0.448 6 0.066 2 0.006 3 0.521 7 40 μm SiO2 1 025.6 0.498 4 0.078 8 0.011 1 0.588 5 -
[1] RAU J Y, CHEN J C, LIN M D, et al. Removal the coal ash, NO and SO2 simultaneously by the fluidized-bed catalyst reactor[J]. Energy & Fuels, 2010, 24(3): 1711-1719. [2] 鲁战明, 陈树忠, 国平, 等. 同时脱硫脱硝除尘烟气超低排放改造[J]. 中国科技信息, 2017(15): 66-67. doi: 10.3969/j.issn.1001-8972.2017.15.022 [3] 郝正. 低温烟气同时脱硫脱硝除尘技术的应用[J]. 绿色科技, 2018(10): 138-139. [4] 许勇毅, 查智明, 赵翠仙. 烟气循环流化床脱硫脱硝工艺技术的特点与现状[J]. 工业安全与环保, 2007, 33(1): 16-17. doi: 10.3969/j.issn.1001-425X.2007.01.007 [5] FINO D, RUSSO N, SARACCO G, et al. A multifunctional filter for the simultaneous removal of fly-ash and NOx from incinerator flue gases[J]. Chemical Engineering Science, 2004, 59(21): 5329-5336. [6] LEE I Y, KIM D W, LEE J B, et al. A practical scale evaluation of sulfated V2O5/TiO2 catalyst from metatitanic acid for selective catalytic reduction of NO by NH3[J]. Chemical Engineering Journal, 2002, 90(3): 267-272. doi: 10.1016/S1385-8947(02)00018-9 [7] NACKEN S, HEIDENREICH S, HACKEL M, et al. Catalytic activation of ceramic filter elements for combined particle separation, NOx removal and VOC total oxidation[J]. Applied Catalysis B: Environmental, 2007, 70(1): 370-376. [8] YANG B C, MA S X, CUI R G, et al. Simultaneous removal of NOx and SO2 with H2O2 catalyzed by alkali/magnetism-modified fly ash: High efficiency, low cost and catalytic mechanism[J]. Chemical Engineering Journal, 2019, 359(1): 233-243. [9] WANG H, YUAN B, HAO R L, et al. A critical review on the method of simultaneous removal of multi-air-pollutant in flue gas[J]. Chemical Engineering Journal, 2019, 378(15): 122-155. [10] GUO Y, LI Y, ZHU T, et al. Effects of concentration and adsorption product on the adsorption of SO2 and NO on activated carbon[J]. Energy & Fuels, 2013, 27(1): 360-366. [11] DUAN Y, DUAN L, WANG J, et al. Observation of simultaneously low CO, NOx and SO2 emission during oxy-coal combustion in a pressurized fluidized bed[J]. Fuel, 2019, 242(15): 347-381. [12] HUANG Z J, HOU Y Q, ZHU Z P, et al. Study on the NO reduction by NH3 on a ${{\rm{SO}}_4^{2 - }}$ /AC catalyst at low temperature[J]. Catalysis Communications, 2014, 50(5): 83-86.[13] SUMATHI S, BHATIA S, LEE K T, et al. Selection of best impregnated palm shell activated carbon (PSAC) for simultaneous removal of SO2 and NOx[J]. Journal of Hazardous Materials, 2010, 176(1/2/3): 1093-1096. doi: 10.1016/j.jhazmat.2009.11.037 [14] 颜深, 孙国刚, 孙占朋, 等. 颗粒床过滤除尘技术研究进展[J]. 化工进展, 2017, 26(9): 3152-3163. [15] LIU K Y, RAU J Y, WEY M Y. The collection of SiO2, Al2O3 and Fe2O3 particles using a gas-solid fluidized bed[J]. Journal of Hazardous Materials, 2009, 171(1/2/3): 102-110. [16] 刘鹏, 杨国华, 朱永锋, 等. 双层滤料颗粒床高温除尘器灰斗气固两相流场模拟分析[J]. 环境工程学报, 2020, 14(3): 754-760. doi: 10.12030/j.cjee.201905057 [17] 单向辉, 刘柏谦, 谭培来, 等. 移动颗粒床除尘器的除尘性能[J]. 环境工程学报, 2017, 11(3): 1698-1706. doi: 10.12030/j.cjee.201511041 [18] LIU K Y, WEY M Y. Filtration of nano particle by a gas-solid fluidized bed[J]. Journal of Hazardous Materials, 2007, 147(1/2): 618-624. [19] TSENG H H, WEY M Y. Effects of acid treatments of activated carbon on its physiochemical structure as a support for copper oxide in DeSO2 reaction catalysts[J]. Chemosphere, 2006, 62(5): 756-766. doi: 10.1016/j.chemosphere.2005.04.077 [20] TSENG H H, WEY M Y. Study of SO2 adsorption and thermal regeneration over activated carbon-supported copper oxide catalysts[J]. Carbon, 2004, 42(11): 2269-2278. doi: 10.1016/j.carbon.2004.05.004 [21] TSENG H H, WEY M Y, FU C H. Carbon materials as catalyst supports for SO2 oxidation: Catalytic activity of CuO-AC[J]. Carbon, 2003, 41(1): 139-149. doi: 10.1016/S0008-6223(02)00264-6 [22] TSENG H H, WEY M Y, LIANG Y S, et al. Catalytic removal of SO2, NO and HCl from incineration flue gas over activated carbon-supported metal oxides[J]. Carbon, 2003, 41(5): 1079-1085. doi: 10.1016/S0008-6223(03)00017-4 [23] WEY M Y, FU C H, TSENG H H, et al. Catalytic oxidization of SO2 from incineration flue gas over bimetallic Cu-Ce catalysts supported on pre-oxidized activated carbon[J]. Fuel, 2003, 82(18): 2285-2290. doi: 10.1016/S0016-2361(03)00165-0 [24] RAU J Y, TSENG H H, CHIANG B C, et al. Evaluation of SO2 oxidation and fly ash filtration by an activated carbon fluidized bed reactor: The effects of acid modification, copper addition and operating condition[J]. Fuel, 2010, 89(3): 732-742. doi: 10.1016/j.fuel.2009.10.017 [25] YANG W C, HO T C. Handbook of Fluidization and Fluid-Particle Systems, Marcel Dekker[M]. Incorporated, New York, 2003. doi: 10.1201/9780203912744. [26] RAU J Y, CHEN J C, WEY M Y, et al. Effects of H2O and particles on the simultaneous removal of SO2 and fly ash using a fluidized-bed sorbent/catalyst reactor[J]. Industrial & Engineering Chemistry Research, 2009, 48(23): 10541-10550. [27] LU C Y, WEY M Y, CHEN L. Application of polyol process to prepare AC supported nanocatalyst for VOC oxidation[J]. Applied Catalysis A: General, 2007, 325(1): 163-174. doi: 10.1016/j.apcata.2007.03.030 [28] XU Y, LU G, GUO Y, et al. Effect of pretreatment method of activated carbon on the catalytic reduction of NO by carbon over CuO[J]. Applied Catalysis B: Environmental, 2008, 79(3): 262-269. doi: 10.1016/j.apcatb.2007.10.027