-
由于厌氧生物技术具有低能耗、可回收甲烷以及污泥产量低等优点,常作为高浓度有机废水处理的首选工艺。然而,在一些化工合成材料和医药中间体生产过程中由于大量硫酸的使用,使得废水具有高硫碳比的特点。对于这类废水如果使用厌氧生物处理技术,由于硫酸盐还原菌(SRB)与产甲烷菌(MPA)的竞争生长,会产生大量还原态硫,这会带来2个问题:一是硫化氢会对产甲烷菌的活性产生抑制作用,往往致使系统失稳甚至崩溃;二是处理过程中产生的沼气由于硫化氢含量高,从而导致后期气体净化成本大幅增加[1-2]。为此,有学者尝试在处理系统中添加SRB的抑制剂(钼酸盐),抑制H2S的产生,但钼酸盐同时也抑制了MPA,且随着SRB的逐渐驯化,这种抑制作用逐渐减弱[3]。而添加铁盐或铝盐形成硫化物沉淀,也可以减轻H2S对MPA的抑制毒性[4-6],但系统运行费用会显著增加,而且产生的大量沉淀物如何有效处理也是一个难题。一般认为,游离的分子态H2S的抑制行为是硫化物抑制MPA活性的主要作用形式[7],而硫化物浓度受pH的波动变化较大(pH=7.0,H2S约50%;pH>8.0,H2S低于10%)。因此,基于硫化物的存在形态随pH的变化而改变,提高反应器运行的pH,一方面可能会改善游离态H2S对MPA活性的毒性抑制,另一方面亦可减少沼气中H2S含量,为甲烷气体的利用提供便利。虽然有一些研究[8-10]表明,高pH (pH≥8.0)不利于常规MPA的生长代谢,会致使系统中的SRB成为优势菌种。但也有研究[11]发现,在人工或自然环境中存在着大量的嗜碱产甲烷菌,而且表现出较好的产甲烷活性。最早的一株嗜碱产甲烷杆菌是从沼气工程的厌氧污泥中分离得到的,其最适pH为7.5~8.5,在pH为 6.5~10.0时均可以生长。有研究[12-13]从不同的高碱性湖中分离得到嗜碱产甲烷八叠球菌LN1和嗜碱产甲烷八叠球菌NY-728,其在pH为6.5~9.5下均可生长,最适pH分别为8.9和8.1~8.7。这些嗜碱产甲烷菌的存在,就为高pH运行的厌氧产甲烷微生物体系的构建提供了可能。
鉴于此,本文搭建了一套pH为8.5的升流式厌氧污泥反应器(UASB),将其用于含高硫酸盐有机废水的处理,考察了不同运行条件下的系统净化性能,探究了高pH下MPA和SRB的竞争机制以及微生物群落结构演变特征,以期为厌氧生物系统在高pH运行下处理高含硫有机废水反应器的构建及调控提供一定的理论依据和数据支撑。
高pH条件下UASB反应器处理含硫酸盐废水的性能
Performance of UASB system on treating sulphate containing wastewater under high pH condition
-
摘要: 利用升流式厌氧活性污泥床(UASB)反应器处理高含硫有机废水,考察了其在pH=8.5条件下的运行性能、MPA(产甲烷菌)与SRB(硫酸盐还原菌)的竞争规律及微生物群落结构特征。结果表明:在pH=8.5的厌氧生物处理系统中,COD的去除率达到70%以上和硫酸盐去除量达到1 600 mg·L−1,在整个运行期间均保持较好的性能;在COD/
${\rm{SO}}_4^{2 - }$ 为1~10时,MPA始终占有主导地位;在整个运行期间,水相中游离H2S浓度最高仅为5.7 mg·L−1,沼气中的H2S浓度处于较低水平(最高为1.5 mg·L−1)。系统中主要的耐碱性MPA为甲烷丝菌属、甲烷短杆菌、未分类甲烷杆菌科。由此可见,高pH可以有效解除游离态H2S对MPA活性抑制,亦可减少沼气中的H2S含量。Abstract: A laboratory-scale up-flow anaerobic sludge blanket (UASB) was used and consciously operated at the high pH of 8.5 to investigate the removal performance on high sulfur organic wastewater in terms of the competitive rule between methane producing archaea (MPA) and sulfate-reducing bacteria (SRB) and the structure characteristics of microbial community. The results showed that UASB had a COD removal rate over 70% and sulfate removal of about 1600 mg·L−1 when the system was operated at the pH = 8.5, which maintained a good performance during the operation. Although the ratio of COD to${\rm{SO}}_4^{2 - }$ (i.e., COD/${\rm{SO}}_4^{2 - }$ ) was an important impact factor on the reactor performance, the MPA was still a dominant bacteria when COD/${\rm{SO}}_4^{2 - }$ widely fluctuated from 1 to 10. At the whole operating stage, the concentration of free H2S in aqueous was lower than 5.7 mg·L−1, and the concentration of H2S in biogas was at a low level (≤1.5 mg·L−1). The three main alkali-resistance MPAs were identified as Methanosaeta sp., Methanobrevibacter and unclassified_f_Methanobacteriacea, respectively. Thus, high pH could contribute to take away the toxicity inhibition of free H2S on MPA activity, and also reduce the content of H2S in biogas, which can provide reference for high pH anaerobic treatment of sulfuric acid wastewater.-
Key words:
- sulfate /
- high pH /
- microbial community /
- alkali-resistance MPA
-
表 1 UASB反应器运行情况
Table 1. Operation of UASB
阶段 运行时间/d HRT/h COD/(mg·L−1) ${\rm{SO}}_4^{2 - }$ /(mg·L−1)COD/ ${\rm{SO}}_4^{2 - }$ COD负荷/
(kg·(m3·d)−1)${\rm{SO}}_4^{2 - }$ 负荷/
(kg·(m3·d)−1)I 60 96 2 000 200 10 0.5 0.05 II 90 48 2 000 200 10 1 0.1 120 24 2 000 200 10 2 0.2 150 16 2 000 200 10 3 0.3 III 180 16 2 000 250 8 3 0.375 210 16 2 000 400 5 3 0.6 240 16 2 000 1 000 2 3 1.5 270 16 2 000 2 000 1 3 3 330 16 2 000 4 000 0.5 3 6 表 2 厌氧污泥的细菌多样性指标
Table 2. Bacterial diversity indices of anaerobic granules
COD/ ${\rm{SO}}_4^{2 - }$ sobs shannon simpson ace chao 覆盖率/% 10 596 3.90 0.08 670.97 689.19 99.75 8 339 2.52 0.29 425.74 422.32 99.72 5 428 2.38 0.35 499.15 505.94 99.85 2 375 2.27 0.32 449.78 444.41 99.77 0.5 383 2.27 0.30 546.77 467.17 99.85 -
[1] JANSSEN A J H, LENS P N L, STAMS A J M, et al. Application of bacteria involved in the biological sulfur cycle for paper mill effluent purification[J]. World Pulp & Paper, 2010, 407(4): 1333-1343. [2] LIU B, WU W, ZHAO Y, et al. Effects of ethanol/ ${\rm{SO}}_4^{2 - }$ ratio and pH on mesophilic sulfate reduction in UASB reactors[J]. African Journal of Microbiology Research, 2010, 4(21): 2215-2222.[3] ISA M H, ANDERSON G K. Molybdate inhibition of sulphate reduction in two-phase anaerobic digestion[J]. Process Biochemistry, 2005, 40(6): 2079-2089. doi: 10.1016/j.procbio.2004.07.025 [4] LIU Y, ZHANG Y, NI B J. Evaluating enhanced sulfate reduction and optimized volatile fatty acids (VFA) composition in anaerobic reactor by Fe (Ⅲ) addition[J]. Environmental Science & Technology, 2015, 49(4): 2123-2131. [5] 徐中慧, 李东伟, 王克浩, 等. 两相厌氧反应器相分离实验研究[J]. 环境工程学报, 2010, 4(12): 2786-2788. [6] 苗英霞, 王静, 张雨山. 含盐污泥厌氧消化过程中金属离子对硫化氢产气率的抑制作用[J]. 工业水处理, 2010, 30(3): 16-19. [7] CHEN J L, ORTIZ R, STEELE T W J, et al. Toxicants inhibiting anaerobic digestion: A review[J]. Biotechnology Advances, 2014, 32(8): 1523-1534. doi: 10.1016/j.biotechadv.2014.10.005 [8] VISSER A, POL W H, LETTINGA G. Competition of methanogenic and sulfidogenic bacteria[J]. Water Science & Technology, 1996, 33(3): 99-110. [9] OFLAHERTY V, MAHONY T. Effect of pH on growth kinetics and sulphide toxicity thresholds of a range of methanogenic, syntrophic, and sulfate-reducing bacteria[J]. Process Biochemistry, 1998, 33(5): 555-569. doi: 10.1016/S0032-9592(98)00018-1 [10] HAO T W, XIANG P Y, MACKEY H R, et al. A review of biological sulfate conversions in wastewater treatment[J]. Water Research, 2014, 65: 1-21. doi: 10.1016/j.watres.2014.06.043 [11] BLOTEVOGEL K H, FISCHER U, MOCHA M, et al. Methanobacterium thermoalcaliphilum spec. nov.: A new moderately alkaliphilic and thermophilic autotrophic methanogen[J]. Archives of Microbiology, 1985, 142(3): 211-217. doi: 10.1007/BF00693392 [12] NAKATSUGAWA N, HORIKOSHI K. Studies of methanogens which grow in extreme environments screening, isolation, identification and growth characteristics of novel super-methanogens[J]. Kagaku Kogaku Ronbunshu, 1991, 17(3): 655-666. doi: 10.1252/kakoronbunshu.17.655 [13] THAKKER C D, RANADE D R. An alkalophilic Methanosarcina isolated from Lonar crater[J]. Current Science, 2002, 82(4): 455-458. [14] 刘娜. 硫酸盐还原菌的分类鉴定及抑制规律研究[D]. 武汉: 华中科技大学, 2012. [15] 蒋永荣, 刘可慧, 刘成良, 等. UASB处理硫酸盐有机废水的启动[J]. 环境工程学报, 2014, 8(9): 3572-3576. [16] MIZUNO O, LI Y Y, NOIKE T. Effects of sulfate concentration and sludge retention time on the interaction between methane production and sulfate reduction for butyrate[J]. Water Science & Technology, 1994, 30(8): 45-54. [17] 陈业钢, 祁佩时, 刘云芝, 等. 硫酸盐对抗生素废水厌氧生物处理的影响[J]. 中国给水排水, 2002, 18(6): 18-22. [18] 殷增杰, 薛嵘, 臧立华, 等. 高浓度硫酸根废水厌氧系统处理效果及产气研究[J]. 济南大学学报(自然科学版), 2016, 30(4): 293-297. [19] HU Y, JING Z, SUDO Y, et al. Effect of influent COD/ ${\rm{SO}}_4^{2 - }$ ratios on UASB treatment of a synthetic sulfate-containing wastewater[J]. Chemosphere, 2015, 130: 24-33. doi: 10.1016/j.chemosphere.2015.02.019[20] 李俊, 李燕, 罗干, 等. 两相厌氧工艺处理硫酸盐有机废水研究进展[J]. 工业用水与废水, 2016, 47(3): 6-10. [21] YUAN H, CHEN Y, ZHANG H, et al. Improved bioproduction of short-chain fatty acids (SCFAS) from excess sludge under alkaline conditions[J]. Environmental Science & Technology, 2006, 40(6): 2025. [22] LU X, ZHEN G, NI J, et al. Effect of influent COD/ ${\rm{SO}}_4^{2 - }$ ratios on biodegradation behaviors of starch wastewater in an upflow anaerobic sludge blanket (UASB) reactor[J]. Bioresource Technology, 2016, 214: 175-183. doi: 10.1016/j.biortech.2016.04.100[23] CHEN Y, HE S, ZHOU M, et al. Feasibility assessment of up-flow anaerobic sludge blanket treatment of sulfamethoxazole pharmaceutical wastewater[J]. Frontiers of Environmental Science & Engineering, 2018, 12(5): 13. [24] LI Y Y, LAM S, FANG H H P. Interactions between methanogenic, sulfate-reducing and syntrophic acetogenic bacteria in the anaerobic degradation of benzoate[J]. Water Research, 1996, 30(7): 1555-1562. doi: 10.1016/0043-1354(95)00316-9 [25] JEONG T Y, CHUNG H K, YEOM S H, et al. Analysis of methane production inhibition for treatment of sewage sludge containing sulfate using an anaerobic continuous degradation process[J]. Korean Journal of Chemical Engineering, 2009, 26(5): 1319-1322. doi: 10.1007/s11814-009-0229-0 [26] RIVIÈRE, DELPHINE, DESVIGNES V, et al. Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge[J]. ISME Journal, 2009, 3(6): 700-714. doi: 10.1038/ismej.2009.2 [27] DAI X, HU C, ZHANG D, et al. A new method for the simultaneous enhancement of methane yield and reduction of hydrogen sulfide production in the anaerobic digestion of waste activated sludge[J]. Bioresource Technology, 2017, 243: 914. doi: 10.1016/j.biortech.2017.07.036 [28] LI W, WANG C, TIAN Z, et al. Anaerobic treatment of p-acetamidobenzene sulfonyl chloride (p-ASC)-containing wastewater in the presence or absence of ethanol in a UASB reactor[J]. International Biodeterioration & Biodegradation, 2015, 98: 81-88. [29] JIANG Y, LI H, QIN Y, et al. Spatial separation and bio-chain cooperation between sulfidogenesis and methanogenesis in an anaerobic baffled reactor with sucrose as the carbon source[J]. International Biodeterioration & Biodegradation, 2019, 138: 99-105. [30] LU X, NI J, ZHEN G, et al. Response of morphology and microbial community structure of granules to influent COD/ ${\rm{SO}}_4^{2 - }$ ratios in an upflow anaerobic sludge blanket (UASB) reactor treating starch wastewater[J]. Bioresource Technology, 2018, 256: 456-465. doi: 10.1016/j.biortech.2018.02.055[31] OMIL F, OUDE S, LENS P, et al. Effect of the inoculation with Desulforhabdus amnigenus and pH or O2 shocks on the competition between sulphate reducing and methanogenic bacteria in an acetate fed UASB reactor[J]. Bioresource Technology, 1997, 60(2): 113-122. doi: 10.1016/S0960-8524(97)00014-X [32] LU X, ZHEN G, NI J, et al. Sulfidogenesis process to strengthen re-granulation for biodegradation of methanolic wastewater and microorganisms evolution in an UASB reactor[J]. Water Research, 2017, 108(1): 137-150.