-
世界卫生组织(World Health Organization,WHO)指出氟存在于水中会导致大规模健康问题。适量的氟有助于人类的健康,但过量氟摄入会导致骨质疏松、脑损伤等许多疾病。WHO建议饮用水中氟浓度应低于1.5 mg·L−1;我国规定工业废水中F−浓度应低于1 mg·L−1(GB 5749-2006),饮用水中F−浓度应低于1 mg·L−1。在自然界中,矿石中的氟元素通过地质风化作用释放到地下水中,但人类活动已经成为更加主要的氟污染来源。
煤炭是我国的主要能源,每年相关产业会产生约3×108 t焦化废水[1]。焦化废水组分十分复杂,其中就包括高浓度的氟及难降解的有毒有机物,如喹啉、吡啶、吲哚等[2-4]。除了焦化废水,玻璃陶瓷工艺、半导体制造、电镀等工业废水中也含有高浓度的氟。焦化废水的处理主要采用活性污泥法,如A/O或A/A/O法。活性污泥法具有成本低、运行和维护简单等优点[3, 5]。然而,由于焦化废水中还存在大量难生物降解的有机物,活性污泥法出水往往难以达到我国的焦化废水排放标准(GB 16171-2012)。因此,需要进一步处理相关工艺出水。
目前,絮凝沉淀[6-7]、吸附[2]、高级氧化[4, 8-10]、膜滤[11-12],以及这些方法的组合[13]都已被应用于焦化废水的处理。在这些方法当中,絮凝沉淀具有操作简单、去除效率高、成本低等优势,所以受到广泛关注。采用聚合硫酸铁絮凝和聚酰胺-胺(poly(amidoamine),PAMAM)树形分子改良的粉末活性炭吸附结合的方法可以去除焦化废水中85.3%的COD[6];采用聚合氯化铝进行絮凝预处理可以有效降低焦化废水中的污染物浓度,从而降低后续膜蒸馏过程中的膜污染发生的可能性[11]。化学沉降是另一种常见的除氟的方法,常采用的沉降剂有Ca2+、Mg2+、Al3+等金属离子。Ca2+可以通过与F−形成氟化钙沉淀从废水中去除氟,最适宜的pH为9~10。但是这种方法最主要的缺点是CaF2颗粒非常细,还需要采取其他的方法提高其沉降性能,如加入晶种[14]或采用膜滤的方法[15]。但目前少有研究考查絮凝与化学沉降方法结合的去除效果。
本研究考察了2种絮凝剂对有机物和F−的去除效果,并探究了Ca2+对去除效果的影响。采用铁铝复配的絮凝剂以提高絮凝的效率,通过研究FeCl3和AlCl3的比例,以及pH对去除效率的影响,实现了FeCl3和AlCl3协同絮凝去除焦化废水中氟和难降解有机物。
FeCl3和AlCl3协同絮凝去除焦化废水中氟和有机物
Simultaneous removal of fluoride and organic matters from coking wastewater by coagulation
-
摘要: 氟是焦化废水中的待去除的主要污染物。采用FeCl3和AlCl3作为絮凝剂,研究了絮凝对焦化废水中氟和有机物的去除效果,并考查了不同剂量和pH条件下氟和有机物的去除率。结果表明:AlCl3和FeCl3对F-的最高去除率分别为94.4%和27.3%;在投量为20 mmol·L−1时,FeCl3和AlCl3的TOC去除率分别达到27.6%和23.9%。因此,AlCl3对氟的去除率比FeCl3的更高,但FeCl3对有机物的去除率相对更高。加入Ca2+可以促进氟的去除,但有机物的去除率会下降。另外,通过考察不同pH和铁铝配比对去除率的影响,探讨了同时加入FeCl3和AlCl3的去除效果。结果表明,最适合去除有机物和氟的工作条件是pH为6.5,AlCl3和FeCl3的比值为8∶2。本研究探索了FeCl3和AlCl3对焦化废水中氟和有机物的去除机理,实验结果可为焦化废水的深度处理提供参考。Abstract: Fluoride is a predominant contaminant to be removed from coking wastewater. Here, we used AlCl3 and FeCl3 as coagulants, investigating the removal of fluoride and organic matters from coking wastewater, accompanied by exploring the effect of pH and coagulant dosage on the removal efficiency. The results suggested that the best fluoride removal efficiency for AlCl3 and FeCl3 were 94.4% and 27.3%, respectively. At dosage of 20 mmol·L−1, the removal efficiency of total organic carbon (TOC) for FeCl3 and AlCl3 were 27.6% and 23.9%, respectively. Therefore, AlCl3 has greater potential to remove fluoride, while FeCl3 exhibited higher removal efficiency of organic matters. The addition of Ca2+ had some positive effects on fluoride removal, even though decreased the removal efficiency for organic matters. Besides, the performance of Al-Fe combined coagulant was also studied by investigating the effects of pH and Al/Fe ratio on the removal efficiency of fluoride and organic substances. It is suggested that the optimal working condition for the removal of these matters was achieved with the pH of 6.5 and the Al/Fe ratio at 8∶2. In this study, the mechanism of FeCl3 and AlCl3 for the removal of fluorine and organic matters in coking wastewater was explored, and the results can provide reference for the advanced treatment of coking wastewater.
-
Key words:
- coking wastewater /
- fluoride /
- organic matters /
- coagulation
-
-
[1] NA C, ZHANG Y, QUAN X, et al. Evaluation of the detoxification efficiencies of coking wastewater treated by combined anaerobic-anoxic-oxic (A2O) and advanced oxidation process[J]. Journal of Hazardous Materials, 2017, 338: 186-193. doi: 10.1016/j.jhazmat.2017.05.037 [2] YANG W, LI X, PAN B, et al. Effective removal of effluent organic matter (EfOM) from bio-treated coking wastewater by a recyclable aminated hyper-cross-linked polymer[J]. Water Research, 2013, 47(13): 4730-4738. doi: 10.1016/j.watres.2013.05.032 [3] BAI Y, SUN Q, SUN R, et al. Bioaugmentation and adsorption treatment of coking wastewater containing pyridine and quinoline using zeolite-biological aerated filters[J]. Environmental Science & Technology, 2011, 45(5): 1940-1948. [4] ZHU X, NI J, LAI P. Advanced treatment of biologically pretreated coking wastewater by electrochemical oxidation using boron-doped diamond electrodes[J]. Environmental Technology, 2013, 43(17): 4347-4355. [5] OU H S, WEI C H, MO C H, et al. Novel insights into anoxic/aerobic1/aerobic2 biological fluidized-bed system for coke wastewater treatment by fluorescence excitation-emission matrix spectra coupled with parallel factor analysis[J]. Chemosphere, 2014, 113: 158-164. doi: 10.1016/j.chemosphere.2014.04.102 [6] LI J, YUAN X, ZHAO H, et al. Highly efficient one-step advanced treatment of biologically pretreated coking wastewater by an integration of coagulation and adsorption process[J]. Bioresource Technology, 2017, 247: 1206-1209. [7] ZHANG T, DING L, REN H, et al. Ammonium nitrogen removal from coking wastewater by chemical precipitation recycle technology[J]. Water Research, 2009, 43(20): 5209-5215. doi: 10.1016/j.watres.2009.08.054 [8] CHU L, WANG J, DONG J, et al. Treatment of coking wastewater by an advanced Fenton oxidation process using iron powder and hydrogen peroxide[J]. Chemosphere, 2012, 86(4): 409-414. doi: 10.1016/j.chemosphere.2011.09.007 [9] XIN D, ZHANG R, GAN Z, et al. Treatment of high strength coking wastewater by supercritical water oxidation[J]. Fuel, 2013, 104: 77-82. doi: 10.1016/j.fuel.2010.09.018 [10] REN G, ZHOU M, ZHANG Q, et al. Cost-efficient improvement of coking wastewater biodegradability by multi-stages flow through peroxi-coagulation under low current load[J]. Water Research, 2019, 154: 336-348. doi: 10.1016/j.watres.2019.02.013 [11] LI J, WU J, SUN H, et al. Advanced treatment of biologically treated coking wastewater by membrane distillation coupled with pre-coagulation[J]. Desalination, 2016, 380: 43-51. doi: 10.1016/j.desal.2015.11.020 [12] JIN X, LI E, LU S, et al. Coking wastewater treatment for industrial reuse purpose: Combining biological processes with ultrafiltration, nanofiltration and reverse osmosis[J]. Journal of Environmental Sciences, 2013, 25(8): 1565-1574. doi: 10.1016/S1001-0742(12)60212-5 [13] WANG J, JI Y, ZHANG F, et al. Treatment of coking wastewater using oxic-anoxic-oxic process followed by coagulation and ozonation[J]. Carbon Resources Conversion, 2019, 2(2): 151-156. doi: 10.1016/j.crcon.2019.06.001 [14] ALDACO R, GAREA A, IRABIEN A. Calcium fluoride recovery from fluoride wastewater in a fluidized bed reactor[J]. Water Research, 2007, 41(4): 810-818. doi: 10.1016/j.watres.2006.11.040 [15] DAMTIE M M, HAILEMARIAM R H, WOO Y C, et al. Membrane-based technologies for zero liquid discharge and fluoride removal from industrial wastewater[J]. Chemosphere, 2019, 236: 124288. doi: 10.1016/j.chemosphere.2019.07.019 [16] YU W Z, GREGORY J, GRAHAM N. Regrowth of broken hydroxide flocs: Effect of added fluoride[J]. Environmental Science & Technology, 2016, 50(4): 1828-1833. [17] MARTIN R B. Ternary complexes of Al3+ and F− with a third ligand[J]. Coordination Chemistry Reviews, 1996, 149(1): 23-32. doi: 10.1016/0010-8545(95)01170-6 [18] LIU T, YANG B, GRAHAM N, et al. Mitigation of NOM fouling of ultrafiltration membranes by pre-deposited heated aluminum oxide particles with different crystallinity[J]. Journal of Membrane Science, 2016, 544: 359-367. [19] VENDITTI F, CUOMO F, GIANSALVO G, et al. Fluorides decontamination by means of aluminum polychloride based commercial coagulant[J]. Journal of Water Process Engineering, 2018, 26: 182-186. doi: 10.1016/j.jwpe.2018.10.012 [20] DUAN J, GREGORY J. Coagulation by hydrolysing metal salts[J]. Advances in Colloid & Interface Science, 2003, 100-102: 475-502. [21] YU W, LIU T, GREGORY J, et al. Aggregation of nano-sized alum-humic primary particle[J]. Separation & Purification Technology, 2012, 99: 44-49. [22] LIU L, YANG L Q, LIANG H W, et al. Bio-inspired fabrication of hierarchical FeOOH nanostructure array films at the air-water interface: Their hydrophobicity and application for water treatment[J]. ACS Nano, 2013, 7(2): 1368-1378. doi: 10.1021/nn305001r [23] WECKLER B, LUTZ H D. Lattice vibration spectra. Part XCV. Infrared spectroscopic studies on the iron oxide hydroxides goethite (α), akaganéite (β), lepidocrocite (γ), and feroxyhite (δ)[J]. European Journal of Solid State & Inorganic Chemistry, 1998, 35(8/9): 531-544. [24] JIN X, LIU Y, WANG Y, et al. Towards a comparison between the hybrid ozonation-coagulation (HOC) process using Al- and Fe-based coagulants: Performance and mechanism[J]. Chemosphere, 2020, 253: 126625. doi: 10.1016/j.chemosphere.2020.126625 [25] MITROVIC B, MILACIC R. Speciation of aluminium in forest soil extracts by size exclusion chromatography with UV and ICP-AES detection and cation exchange fast protein liquid chromatography with ETAAS detection[J]. Science of the Total Environment, 2000, 258(3): 183-194. doi: 10.1016/S0048-9697(00)00569-6