-
市政污水处理厂产生的剩余污泥因其胶体结构与高亲水性质而导致其部分水难以脱除[1-2]。剩余污泥经浓缩或机械脱水后,含水率一般仍在80%以上。高含水率造成了污泥体积庞大、运输成本高、占用处理场地大以及处理处置困难等问题[3]。因此,如何经济有效地降低污泥的含水率成为了污泥处理的关键问题之一。
一些研究者发现,污泥表面的胞外聚合物(EPS)是造成污泥脱水困难的重要因素之一[4-6]。剩余污泥有机物组成中50%~60%是EPS,而EPS中的70%~80%是蛋白质(PN)与多糖(PS)等大分子有机物[7]。在不同污泥中,EPS的组成亦不同[8]。PN与PS通过氢键等作用力将部分水锁定在污泥表面形成水膜,致使这部分水无法通过常规的机械方法被脱除。因此,有研究者将芬顿高级氧化的方法引入到污泥的脱水处理中,依靠其产生的羟基自由基破坏污泥表面的EPS结构,从而达到提高污泥的脱水性能的目的[4, 9]。但是,苛刻的反应条件限制了常规芬顿方法的应用。芬顿处理使用的H2O2存在较高的运输、保存费用,故有报道[10-12]用氧化能力稍差的过硫酸盐高级氧化法代替传统的芬顿氧化法。虽然效果不如传统的芬顿方法,但过硫酸盐的经济性更优,使其成为了研究的热点。也有研究者[3, 13]通过加快Fe3+向Fe2+的转化速率而改用Fe3O4或Fe0的类芬顿方法;通过加快自由基的生成速率从而达到提高污泥脱水性能的目的。传统经芬顿方法处理后的污泥粒径小,易堵塞过滤通道,不利于脱水[1]。为了优化污泥脱水效果,通过表面活性剂的强絮凝作用[14-16]或在体系中引入CaO等具有刚性晶格结构[17-19]的骨架成为新的研究热点。
阳离子表面活性剂因其能同时促进污泥表面EPS的溶出与转化[20]受到了研究者的青睐。十二烷基二甲基苄基氯化铵(DDBAC)作为一种工业上经常使用的阳离子表面活性剂,已被证实单独作用于污泥时有较强的絮凝作用[21]。但是,昂贵的价格和较大的投加量限制了对他的推广和应用。CaO作为骨架结构作用于污泥时效果显著,但其存在投加量过高(100~200 mg·g−1)的问题。经CaO处理后的污泥体系碱性过强[22],且处理污泥易板结,有机物含量低,进而影响污泥的最终处置。
为了减少CaO的用量,同时提高污泥的再絮凝能力,保证处理后体系的pH接近中性。本研究将CaO与DDBAC联用于最适条件下芬顿调理后的污泥,并分析污泥脱水过程中EPS的转化规律;通过在pH为5的弱酸性条件下重复上述实验,以期通过两者的协同作用来达到共同提高污泥脱水效果的目的;同时避免体系投入过多的酸调节pH,为后续芬顿方法在弱酸条件下的应用提供参考。
芬顿氧化钙体系联合DDBAC对污泥脱水性能的影响
Effect of Fenton’s reagent and CaO system combined with DDBAC on sludge dewaterability
-
摘要: 在pH为3和5的条件下,研究了芬顿氧化钙体系联合十二烷基二甲基苄基氯化铵(DDBAC)对污泥破解效果及脱水性能的影响,以期减少CaO的用量并同时提高芬顿反应的适用pH。以脱水泥饼含水率(WC)、毛细吸水时间(CST)、过滤时间(TTF)、污泥沉降比(SV)和胞外聚合物(EPS)中蛋白质(PN)与多糖(PS)的含量作为评价指标,对DDBAC投加量做单因素分析,找出其最佳投加量;并比较在不同pH条件下,DDBAC对污泥脱水性能的影响。结果表明,在pH为3条件下,H2O2、Fe2+、CaO、DDBAC投加量分别为60、30、60、60 mg·g−1(DS)时,污泥脱水效果最佳,其WC为68.57%、CST为24 s、TTF为44 s、SV为72%。最佳脱水条件污泥EPS中的PN、PS总量大幅降低,其中T-EPS含量变化相较于S/L-EPS与污泥脱水性能的变化有更强的联系。在pH为5的条件下,该联合体系也有较好的脱水效果,对芬顿体系在弱酸性环境下使用有一定的参考价值。该联合体系能有效降低CaO的用量,同时能避免处理后的污泥pH过高、易板结的问题,且不会造成二次污染。Abstract: In order to reduce the amount of CaO and increase the applicable pH for the Fenton reaction, the effect of Fenton’s reagent and CaO system combined with DDBAC on the cracking effect and dewaterability of sludge under pH values of 3 and 5 were investigated in this study.Water content of filtered cake (WC), capillary suction time (CST), and time to filter (TTF), sludge volume (SV), protein (PN) and polysaccharide (PS) contents in extracellular polymeric substance (EPS) were used to evaluate the sludge dewaterability.And single factor experiment was conducted on DDBAC’s dosage to find the optimal dosages.The results showed that the sludge dewaterability was the best when the dosages of H2O2, Fe2+, CaO and DDBAC were 60, 30, 60 and 60 mg·g−1(DS), at a pH of 3.The WC, CST, TTF and SV were 68.57%, 24 s, 44 s and 72%, and the total PN and PS in the sludge EPS were significantly reduced. The change of T-EPS content was more strongly related to the change of sludge dewaterability than that of S/ L-EPS.Under the condition of pH 5, the combined system also had a good dewaterability, and the filter cake’s pH was close to neutral, which had certain reference value for the application of Fenton’s reagent in weak acid environment. The combined system could effectively reduce the dosage of CaO, and at the same time avoided the problem of high pH of treated sludge, easy hardening, and will not cause secondary pollution.
-
表 1 污泥的基本特性
Table 1. Basic characteristics of raw sewage sludge
密度/(g·cm−3) pH 含水率/% 滤饼含水率/% CST/s SV/% 1.002 6.76±0.05 97.52±0.2 83.95±0.1 66±2 94±1 -
[1] QI Y, THAPA K B, HOADLEY A F A. Application of filtration aids for improving sludge dewatering properties: A review[J]. Chemical Engineering Journal, 2011, 171: 373-384. doi: 10.1016/j.cej.2011.04.060 [2] YANG G, ZHANG G M, WANG H C. Current state of sludge production, management, treatment and disposal in China[J]. Water Research, 2015, 78: 60-73. doi: 10.1016/j.watres.2015.04.002 [3] 王丽苹, 李平, 木合塔尔·吐尔洪, 等. Fe0/H2O2类芬顿法提高污泥脱水性能及机理分析[J]. 现代化工, 2018, 38(12): 119-123. [4] TONY M A, ZHAO Y Q, TAYEB A M. Exploitation of Fenton and Fenton-like reagents as alternative conditioners for alum sludge conditioning[J]. Journal of Environmental Sciences, 2009, 21: 101-105. doi: 10.1016/S1001-0742(09)60018-8 [5] HOUGHTON J I, QUARMBY J, STEPHENSON T. Municipal wastewater sludge dewaterability and the presence of microbial extracellular polymer[J]. Water Science & Technology, 2001, 44(2/3): 373-379. [6] YU G H, HE P J, SHAO L M. Stratification structure of sludge flocs with implications to dewaterability[J]. Environmental Science & Technology, 2008, 42(21): 7944-7949. [7] FENG X, DENG J C, LEI He Y, et al. Dewaterability of waste activated sludge with ultrasound conditioning[J]. Bioresource Technology, 2009, 100(3): 1074-1081. doi: 10.1016/j.biortech.2008.07.055 [8] SHENG G P, YU H Q, LI X Y. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: A review[J]. Biotechnology Advances, 2010, 28: 882-894. doi: 10.1016/j.biotechadv.2010.08.001 [9] BUYUKKAMAIC N. Biological sludge conditioning by Fenton’s reagent[J]. Process Biochemistry, 2004, 39(11): 1503-1506. doi: 10.1016/S0032-9592(03)00294-2 [10] 徐文迪, 常沙, 明铁山, 等. 基于硫酸根自由基(SO4−·)的污泥预处理技术[J]. 环境工程学报, 2018, 12(5): 1528-1535. [11] GUO S D, LIANG H, BAI L M. Synergistic effects of wheat straw powder and persulfate/Fe(II) on enhancing sludge dewaterability[J]. Chemosphere, 2019, 215: 333-341. doi: 10.1016/j.chemosphere.2018.10.008 [12] LIU L Y, YAN H, YANG C. Dewatering of drilling sludge by ultrasound assisted Fe(II)-activated persulfate oxidation[J]. Royal Society of Chemistry, 2018, 8: 29756-29766. [13] 汪日平, 王继鹏, 周正伟, 等. Fe3O4/石墨烯-H2O2预处理对污泥脱水性能的影响及其作用机理[J]. 环境工程学报, 2017, 11(10): 5590-5596. [14] 于文华, 濮文虹, 时亚飞, 等. 阳离子表面活性剂与石灰联合调理对污泥脱水性能的影响[J]. 环境化学, 2013, 32(9): 1785-1791. [15] 李雪, 李飞, 曾光明, 等. 表面活性剂对污泥脱水性能的影响及其作用机理[J]. 环境工程学报, 2016, 10(5): 2221-2226. [16] 陈银广, 杨海真, 吴桂标, 等. 表面活性剂改进活性污泥的脱水性能及其作用机理[J]. 环境科学, 2000, 21(5): 97-100. [17] 刘欢. F-S复合调理剂对市政污泥脱水性能影响的研究[D]. 武汉: 华中科技大学, 2012. [18] LIN Y F, JING S R, LEE D Y. Recycling of wood chips and wheat dregs for sludge processing[J]. Bioresource Technology, 2011, 76(2): 161-163. [19] 张昊, 杨家宽, 虞文波, 等. Fenton试剂与骨架构建体复合调理剂对污泥脱水性能的影响[J]. 环境科学学报, 2013, 33(10): 2742-2749. [20] HONG C, SI Y X, XING Y, et al. Effect of surfactant on bound water content and extracellular polymers substances distribution in sludge[J]. RSC Advances, 2015, 5: 23383-23390. doi: 10.1039/C4RA15370G [21] HONG C, XING Y, HUA X F, et al. Dewaterability of sludge conditioned with surfactant DDBAC pretreatment by acid/alkali[J]. Environmental Biotechnology, 2015, 99: 6103-6111. doi: 10.1007/s00253-015-6451-2 [22] 刘鹏, 刘欢, 姚洪, 等. 芬顿试剂及骨架构建体对污泥脱水性能的影响[J]. 环境科学与技术, 2013, 36(10): 146-151. [23] 刘中兴, 谢传欣, 石宁, 等. 过氧化氢溶液分解特性研究[J]. 齐鲁石油化工, 2009, 37(2): 99-102. [24] RIVAS F J, FRADES B J, BUXEDA P. Oxidation of p-hydroxybenzoic acid by Fenton’s reagent[J]. Water Research, 2001, 35: 387-396. doi: 10.1016/S0043-1354(00)00285-2 [25] LO I M C, LAI K C, CHEN G H. Salinity effect on mechanical dewatering of sludge with and without chemical conditioning[J]. Environmental Science & Technology, 2001, 35: 4691-4696. [26] YANG S F, LI X Y. Influences of extracellular polymeric substances (EPS) on the characteristics of activated sludge under non-steady-state conditions[J]. Process Biochemistry, 2009, 44(1): 91-96. doi: 10.1016/j.procbio.2008.09.010 [27] RIESZ P, BERDAHL D, CHRISTMAN C L. Free radical generation by ultrasound in aqueous and nonaqueous solutions[J]. Environmental Health Perspectives, 1985, 64: 233-252. doi: 10.1289/ehp.8564233 [28] 余瑞元, 袁明秀, 陈丽蓉, 等. 生物化学实验原理和方法[M]. 2版. 北京: 北京大学出版社, 2005. [29] 黄绍松, 梁嘉林, 张斯玮, 等. Fenton氧化联合氧化钙调理对污泥脱水的机理研究[J]. 环境科学学报, 2018, 38(5): 1906-1919. [30] MIKKELSEN L H, KEIDING K. Physico-chenmical characteristics of full scale sewage sludges with implications to dewatering[J]. Water Research, 2002, 36(10): 2451-2462. doi: 10.1016/S0043-1354(01)00477-8 [31] WANG L F, HE D Q, TONG Z H. Characterization of dewatering process of activated sludge assisted by cationic surfactants[J]. Biochemical Engineering Journal, 2014, 91: 174-178. doi: 10.1016/j.bej.2014.08.008 [32] WANG H W, DENG H H, MA L M, et al. Influence of operating conditions on extracellular polymeric substances and surface properties of sludge flocs[J]. Carbohydrate Polymers, 2013, 92: 510-515. doi: 10.1016/j.carbpol.2012.09.055 [33] HONG C, WANG Z Q, SI Y X, et al. Improving sludge dewaterability by combined conditioning with Fenton’s reagent and surfactant[J]. Environmental Biotechnology, 2017, 101: 809-816. doi: 10.1007/s00253-016-7939-0 [34] FU J J, XIA C J, WANG Y. An investigation for the key role of surfactants in activated sludge dewatering[J]. Journal of Chemical Engineering of Japan, 2010, 43(2): 238-246. doi: 10.1252/jcej.09we176 [35] SHEN W, ZHANG K C, KORNFIELD J A, et al. Tuning the erosion rate of artificial protein hydrogels through control of network topology[J]. Nature Materials, 2006, 5(2): 153-158. doi: 10.1038/nmat1573 [36] WEST E R, XU M, WOODRUFF T K, et al. Physical properties of alginate hydrogels and their effects on in vitro follicle development[J]. Biomaterials, 2007, 28(30): 4439-4448. doi: 10.1016/j.biomaterials.2007.07.001