-
核能作为一种清洁能源,提供了世界约9.7%的能源[1],但核电站泄露事故亦会给人类带来危害,长期暴露其中可对人体产生急、慢性损伤[2]。在核电站事故中,铯(Cs)以气溶胶或灰尘为载体扩散并最终大面积沉降并累积在土壤环境中[3]。据报道[4],日本福岛核事故导致距离其核电站24 km处土壤中核素134Cs和137Cs比活度达到7.8×105 Bq·kg−1。137Cs半衰期长达30 a,其环境健康风险长期存在[5-6]。
放射性污染土壤常用的处理方法主要有铲土法、深翻客土法、植物修复、土壤化学淋洗等[7]。铲土法、深翻客土法快速有效,但会造成土壤肥力损失;植物修复法周期长且含放射性植物的处理成本高,有二次污染的风险。土壤化学淋洗是一种简单、高效的土壤修复方法,淋洗剂的选择及淋洗参数的确定直接决定淋洗效果的好坏。常用淋洗剂有螯合剂、强酸强碱、天然有机酸[8]和强酸弱碱盐[9]等。国内外学者利用淋洗剂对重金属及放射性核素污染土壤进行了大量研究。李婷等[10]研究发现,当FeCl3浓度为10.0 mmol·L−1、液土比为10∶1、淋洗时间为1 440 min时,Pb的去除率可达到96.77%;徐辉[11]研究发现,盐酸、硝酸和柠檬酸对污染土壤中钚的去除率均可达90%左右。但强酸强碱对土壤结构破坏较大,而人工螯合剂价格昂贵且难以在土壤中降解,会长期残留于土壤。相比而言,天然有机酸[8,12]和强酸弱碱盐[9,13](如草酸、硫酸铵)因具备淋洗效果较好和对环境友好等优点已被广泛用于污染土壤淋洗修复。沈威等[14]采用浓度为1.0 mol·L−1草酸淋洗去除土壤中的铀,在40 ℃条件下淋洗8 h后去除率为83.78%。除淋洗剂外,还有研究发现,土壤理化性质、淋洗时间及淋洗液的液固比、老化时间也是影响土壤中Cs去除的重要因素[15]。土壤淋洗过程中会产生大量废液,然而,针对这些具有放射性的废液回收处理却少有研究。日本政府曾针对福岛地区污染农田排水,就地取材使用对Cs吸附能力较强的农田土壤作为吸附剂[7]。另外,天然黏土矿物因其来源广泛、成本低廉、层间阳离子交换能力强及比表面积大等特性[16-17],也常作为吸附剂处理废水。有研究发现,Cs不可逆地与高岭石类及长石类的土壤成分结合[18],且蒙脱石对Cs的吸附性能优于其他矿物[19]。
尽管我国核电站安全系数很高,但不可控因素如地震等导致的核泄漏对周边农田污染风险依然存在。目前,鲜有研究针对我国重要核电站周边农田土壤Cs污染开展淋洗技术探索。本研究旨在筛选出适宜放射性核素Cs污染土壤的优良淋洗剂的同时对淋洗液进行回收处理。比较硫酸铵、草酸和柠檬酸3种淋洗剂对Cs污染土壤的淋洗效果;同时,以蒙脱石和实地土壤为吸附剂,探究其对含Cs淋洗液回收效果的影响,提出针对我国重要核电站周边放射性核素污染土壤的淋洗剂和淋洗工艺参数,为实地土壤脱污提供参考。
铯污染土壤的淋洗修复及淋洗液的回收
Leaching remediation of cesium contaminated soil and recovery of leaching solution
-
摘要: 核电站事故造成的土壤放射性核素污染会给环境和人群造成极大的健康风险。通过批量实验,研究了不同淋洗剂对铯(Cs)污染土壤的淋洗效果及蒙脱石对其淋洗液的回收效果。结果表明:硫酸铵对土壤中Cs的淋洗效果最佳,当淋洗时间为120 min、液固比为20∶1时、老化140 d土壤中Cs的去除率最大为40.0%;在未添加硫酸铵时,蒙脱石对Cs的吸附量高达1 032.0 mg·kg−1,但对含有0.01 mol·L−1硫酸铵淋洗液中Cs进行吸附时,蒙脱石对Cs的吸附量降低了74.4%,硫酸铵显著抑制了蒙脱石对Cs的吸附效果。本研究确定了适宜我国Cs污染土壤处置的最佳工艺;同时,考虑到淋洗液的回收问题,采用蒙脱石对洗脱的淋洗液进行循环吸附,从而为实际场地工程项目的实施提供参考。Abstract: After the nuclear power plant accident, the soil contaminated by radionuclides caused great health risks to the environment and the human body. Through batch experiments, the leaching effect of different leaching agents on cesium (Cs) contaminated soil and the recovery effect of montmorillonite on its eluate were studied. The results showed that ammonium sulfate had the best leaching effect for Cs contaminated soil. When the leaching time was 120 min and the liquid solid ratio was 20∶1, the removal rate of Cs from contaminated soil No.7 was 40.0% which was aged for 140 d. When without ammonium sulfate, the adsorption capacity of montmorillonite for Cs was 1032.0 mg·kg−1, however, the adsorption capacity of Cs was decreased by 74.4% when leaching solution contained 0.01 mol·L−1 ammonium sulfate, which significantly inhibited the adsorption of Cs by montmorillonite. This study has determined the best technology, which was suitable for the disposal of Cs contaminated soil in our country. Considering the recovery of the elution waste, montmorillonite is used to recycle and adsorb the elution waste, so as to provide technical reference for the implementation of the actual site project.
-
Key words:
- radionuclide contamination /
- Cs /
- leached soil /
- ammonium sulfate /
- clay minerals /
- adsorption
-
表 1 供试土壤的基本理化性质
Table 1. Physical-chemical characteristics of contaminated soils
土壤编号 地点 有机质含量/
(g·kg−1)全氮/
(g·kg−1)总磷/
(mg·kg−1)全钾/
(103 mg·kg−1)阳离子交换量/
(cmol·kg−1)1 林地 6.23 0.41 138.2 1.45 3.73 2 农田 16.10 0.85 55.7 6.94 3.73 3 农田 14.91 1.07 66.2 1.16 7.27 4 果园 15.21 2.29 277.1 4.74 7.68 5 农田 9.42 0.62 64.5 1.29 4.58 6 农田 20.81 1.69 363.1 2.77 18.98 7 农田 9.56 1.38 332.0 2.41 16.32 表 2 Cs在蒙脱石和土壤表面的Freundlich等温吸附方程参数
Table 2. Freundlich parameters of Cs on montmorillonite and soil surface
吸附质 Freundlich等温吸附方程lnQ=nlnC+lnKF n lnKF R2 蒙脱石 0.58 6.40 0.99 7号土样 0.54 5.75 0.98 3号土样 0.46 4.35 0.99 -
[1] AIE. Key World Energy Statistics[R]. Vienna: Internat. Atomic Energy Agency, 2013. [2] 李祎邈. MgO-SiO2-H2O体系对铯的吸附性能及固化机理研究[D]. 大连: 大连理工大学, 2019. [3] NAKANO M, YONG R N. Overview of rehabilitation schemes for farmlands contaminated with radioactive cesium released from Fukushima power plant[J]. Engineering Geology, 2013, 155: 78-93. [4] World Health Organization. Health risk assessment from the nuclear accident after the 2011 Great East Japan earthquake and tsunami based on a preliminary dose estimation Geneva[R]. 2013: 51-69. [5] 吴虹霁. 西南某地红壤中铯的吸附动力学研究[D]. 成都: 成都理工大学, 2007. [6] IGARASHI S, NOMURA N, MISHIMA F, et al. Study on magnetic separation for decontamination of cesium contaminated soil by using superconducting magnet[J]. Physica C: Superconductivity and Its Applications, 2014, 504: 144-147. doi: 10.1016/j.physc.2014.02.015 [7] 张琼, 陈金融, 张春明, 等. 日本福岛地震后土壤放射性污染修复概述[C]//环境保护部核与辐射安全中心. “二十一世纪初辐射防护论坛”第十次会议: 核与辐射设施退役及放射性废物治理研讨会论文集. 绵阳, 2012: 351-361. [8] 李丹丹, 郝秀珍, 周东美, 等. 淋洗法修复铬渣污染场地实验研究[J]. 农业环境科学学报, 2011, 30(12): 2451-2457. [9] 陈靖宇. 淋洗法修复砷污染土壤技术研究进展[J]. 化工管理, 2019(35): 128-129. [10] 李婷, 蔡芫镔, 方圣琼, 等. FeCl3淋洗修复重金属Pb污染土壤技术研究[J]. 能源与环境, 2020(4): 62-65. [11] 徐辉. 放射性污染土壤中钚的赋存形态及去污技术研究[D]. 北京: 清华大学, 2017. [12] JEAN L, BORDAS F, GAUTIER C M, et al. Effect of citric acid and EDTA on chromium and nickel uptake and translocation by datura innoxia[J]. Environmental Pollution, 2008, 153(3): 555-563. doi: 10.1016/j.envpol.2007.09.013 [13] KIM G N, CHIO W K, JUNG C H, et al. Development of a washing system for soil contaminated with radionuclides around TRIGA reactors[J]. Journal of Industrial and Engineering Chemistry, 2007, 13(3): 406-413. [14] 沈威, 高柏, 章艳红, 等. 化学淋洗法对铀污染土壤的修复效果研究[J]. 有色金属(冶炼部分), 2019(11): 81-86. [15] FAN Q H, TANAKA M, TANAKA K, et al. An EXAFS study on the effects of natural organic matter and the expandability of clay minerals on cesium adsorption and mobility[J]. Geochimica Et Cosmochimica Acta, 2014, 135: 49-65. doi: 10.1016/j.gca.2014.02.049 [16] SATO K, FUJIMOTO K, DAI W, et al. Molecular mechanism of heavily adhesive Cs: Why radioactive Cs is not decontaminated from soil[J]. The Journal of Physical Chemistry C, 2013, 117(27): 14075-14080. doi: 10.1021/jp403899w [17] ZHANG H, ZHAO X, WEI J, et al. Removal of cesium from low-level radioactive wastewaters using magnetic potassium titanium hexacyanoferrate[J]. Chemical Engineering Journal, 2015, 275: 262-270. doi: 10.1016/j.cej.2015.04.052 [18] KOZAI N, OHNUKI T, ARISAKA M, et al. Chemical states of fallout radioactive Cs in the soils deposited at Fukushima Daiichi Nuclear Power Plant accident[J]. Journal of Nuclear Science and Technology, 2012, 49(5): 473-478. doi: 10.1080/00223131.2012.677131 [19] 李世红, 李春江, 于涛, 等. Cs+和Yb3+在方解石、高岭石、蒙脱石、绿泥石和海绿石上的吸附实验研究[J]. 核化学与放射化学, 2002, 24(2): 70-76. [20] HUANG B, LI Z, HUANG J, et al. Aging effect on the leaching behavior of heavy metals (Cu, Zn, and Cd) in red paddy soil[J]. Environmental Science and Pollution Research, 2015, 22(15): 11467-11477. doi: 10.1007/s11356-015-4386-x [21] 罗洁, 张海军, 刘璟, 等. 碱激发粉煤灰对Cs+的吸附行为[J]. 化工环保, 2015, 35(2): 192-198. [22] 高风翔, 赵永红, 周丹, 等. 生物表面活性剂对原矿中稀土淋洗效果的影响[J]. 有色金属科学与工程, 2018, 9(3): 94-99. [23] 李婷, 涂安斌, 张越非, 等. 混合铵盐用于风化壳淋积型稀土矿浸取稀土的动力学研究[J]. 化工矿物与加工, 2009, 38(2): 19-24. [24] 王瑞祥, 谢博毅, 余攀, 等. 离子型稀土矿浸取剂遴选及柱浸工艺优化研究[J]. 稀有金属, 2015, 39(11): 1060-1064. [25] 林瑞聪, 潘伟斌, 邓翠兰, 等. 单一及复合外源镉(Ⅱ)铬(Ⅲ)污染在红壤中的老化过程[J]. 科学技术与工程, 2019, 19(23): 328-335. [26] NÚÑEZ C, CRUELLS M, SOTO L G, et al. A general shrinking-particle model for the chemical dissolution of all types of cylinders and discs[J]. Hydrometallurgy, 1994, 36(3): 285-294. doi: 10.1016/0304-386X(94)90027-2 [27] 范波. 离子型稀土矿镁盐浸矿场地淋洗机制及尾矿修复研究[D]. 北京: 北京有色金属研究总院, 2020. [28] 王东辉, 李广辉, 秦仕强, 等. Cr(VI)污染细粒土壤化学淋洗修复效果与经济成本分析[J]. 生态学杂志, 2020, 39(7): 2309-2315. [29] 郭探. 铷、铯吸附剂的制备、竞争吸附性能与机理研究[D]. 北京: 中国科学院大学, 2015. [30] 申珂璇, 林森, 孙仕勇. 蒙脱石基生物纳米复合功能材料及应用研究[J]. 人工晶体学报, 2017, 46(8): 1604-1607. [31] 智伟迪. 有机改性蒙脱石的循环再生及其对PPCPs的吸附/脱附行为研究[D]. 上海: 上海师范大学, 2020. [32] RANI R D, SASIDHAR P. Sorption of cesium on clay colloids: Kinetic and thermodynamic studies[J]. Aquatic Geochemistry, 2012, 18(4): 281-296. doi: 10.1007/s10498-012-9163-6 [33] PIRI M, SEPEHR E, RENGRL Z. Citric acid decreased and humic acid increased Zn sorption in soils[J]. Geoderma, 2019, 341: 39-45. doi: 10.1016/j.geoderma.2018.12.027