-
2015年10月1日起,我国对挥发性有机物(volatile organic compounds, VOCs)的排放征收排污费。VOCs的排放控制已成为热点问题。VOCs是指在特定条件下具有挥发性的一类有机化合物,包括烷烃、烯烃、芳香烃、含氧有机化合物、卤代烃等,种类繁多[1]。部分VOCs具有毒性和致癌性,例如苯、二甲苯等对血液、肝脏等有毒害作用[2],二氯甲烷、三氯甲烷等会损伤人体神经中枢和内脏器官[3]。此外,在阳光下,VOCs还会与NOx、O3、·OH等强氧化物质发生光化学反应,形成光化学烟雾,造成大气环境二次污染[4-5]。近年来,O3已经成为我国某些特大城市的重要污染物[6],而VOCs还是O3的重要前体物,故减少VOCs的排放对遏制O3的增长有关键作用。
在我国,煤的燃烧是一个重要的VOCs人为排放源[7-8]。据统计,2017年我国燃煤发电行业的消耗煤炭量已达1.9×109 t,燃煤电厂耗煤量占煤炭总消耗量的49%;另外,我国现存燃煤工业锅炉约4.7×105余台,每年消耗标准煤7×108 t,约占全国全国煤炭消耗总量的20%[9]。燃煤过程排放的大量烟气中不仅含有SO2、NOx、PM2.5等污染物,也含有VOCs类有机物。VOCs主要包括苯、甲苯等苯系物,二氯甲烷、氯仿等卤代烃,以及醇、酮等含氧有机物[10-12]。因此,我国已出台相对严格的排放标准,督促燃煤企业完善污控设施,以控制污染物的排放。这些污控设施在减少SO2、NOx、尘等污染物排放的同时,对减少减少VOCs的排放也产生了积极影响[13-14]。
已有学者对脱硫前后VOCs的排放特征进行了研究[10, 15],但脱硫设施对VOCs和常规污染物的协同控制仍有未解决的问题。本研究中,通过对国内典型燃煤电厂锅炉和焦化厂燃煤锅炉的脱硫设施进出口的烟气中VOCs进行采样,考察脱硫设施控制不同种类VOCs的效果,为研究脱硫设施对2种燃煤锅炉排放VOCs的影响因素和协同控制机制提供参考。
脱硫设施对2种燃煤锅炉排放VOCs的影响
Effect of desulfurization on VOCs emission from two kinds of coal-fired boilers
-
摘要: 利用GC-MS,对我国7家典型燃煤电厂和2家焦化厂燃煤锅炉在脱硫工艺设施前后排放烟气中的VOCs进行了分析,并计算了燃煤电厂锅炉的排放因子和VOCs的排放量。2种锅炉在脱硫后VOCs的浓度分别为85~1 374 μg·m−3和27~45 μg·m−3。脱硫设施对VOCs的排放影响受多种因素影响,包括脱硫设施的种类、VOCs的性质、脱硫浆液等。通过计算得到各企业的臭氧生成潜势值(OFP),为17~2 640 μg·m−3,其中苯系物对臭氧生成的贡献最大。计算得到燃煤电厂的排放因子为2.37 g·GJ−1,每年因火力发电排放的VOCs为4.2×104 t。以上结果可为燃煤电厂的VOCs控制设备和工艺选择提供参考。Abstract: The VOCs in the flue gas before and after wet flue gas desulfurization (WFGD) in 7 typical coal-fired power plants and 2 coking plants in China were investigated by GC-MS, and the emission factors and the VOCs emissions of thermal power plants were calculated. The concentrations of VOCs after WFGD in coal-fired power plants and coking plants were 85~1 374 μg·m−3 and 27~45 μg·m−3, respectively. The impact of WFGD on VOCs emissions is affected by many factors, including kinds of desulfurization, the nature of VOCs, and desulfurization water. The ozone formation potential (OFP) of each plant was calculated, which was in the range of 17~2 640 μg·m−3. Aromatic hydrocarbons contributed the most to ozone generation. The calculated emission factor of coal-fired power plants was 2.37 g·GJ−1, and the annual amount of VOCs emitted by thermal power generation is 42 000 t. Results from this research can provide reference for pollution control of VOCs in coal-fired power plants.
-
表 1 9家燃煤工厂的基本信息
Table 1. Basic information of the investigated nine coal fired plants
工厂编号 负荷 实际负荷 发电量/
(106 kW·h·d−1)耗煤量/
(t·h−1)烟气量/
(105 m3·h−1)脱硝除尘 脱硫方式 A 350 MW 230 MW 10 128 10 SCR+ESP 湿法石灰石脱硫 B 300 MW 190 MW 6 90 8 C 300 MW 210 MW 6 97 9 D 600 MW 450 MW 20 349 22 E 300 MW 120 MW 3 49 9 SCR+LLT-ESP+WESP 高效湿法石灰石脱硫 F 600 MW 280 MW 9 118 13 G 1 000 MW 420 MW 12 210 23 H 75 t·h−1 62 t·h−1 — 13 2 SNCR+EBP 氨法脱硫 I 75 t·h−1 52 t·h−1 — 10 2 -
[1] 梁文俊, 李坚, 李依丽, 等. 挥发性有机物低温等离子体降解的影响参数研究[J]. 环境工程学报, 2009, 6(3): 1079-1083. [2] KHANCHI A, HEBBERN C A, ZHU J, et al. Exposure to volatile organic compounds and associated health risks in windsor, Canada[J]. Atmospheric Environment, 2015, 120: 152-159. doi: 10.1016/j.atmosenv.2015.08.092 [3] 张玉欣, 安俊琳, 林旭, 等. 南京北郊冬季挥发性有机物来源解析及苯系物健康评估[J]. 环境科学, 2017, 38(1): 1-12. [4] 徐静颖, 卓建坤, 姚强. 燃煤有机污染物生成排放特性与采样方法研究进展[J]. 化工学报, 2019, 70(8): 2823-2834. [5] WANG G, CHENG S, WEI W, et al. Characteristics and source apportionment of VOCs in the suburban area of Beijing, China[J]. Atmospheric Pollution Research, 2016, 7(4): 711-724. doi: 10.1016/j.apr.2016.03.006 [6] YIN S, ZHENG J, LU Q, et al. A refined 2010-based VOC emission inventory and its improvement on modeling regional ozone in the Pearl River Delta Region, China[J]. Science of the Total Environment, 2015, 514: 426-438. doi: 10.1016/j.scitotenv.2015.01.088 [7] 梁小明, 孙西勃, 徐建铁, 等. 中国工业源挥发性有机物排放清单[J]. 环境科学, 2020, 41(11): 4767-4775. [8] 梁小明, 张嘉妮, 陈小方, 等. 我国人为源挥发性有机物反应性排放清单[J]. 环境科学, 2017, 38(3): 845-854. [9] YAN Y, PENG L, LI R, et al. Concentration, ozone formation potential and source analysis of volatile organic compounds (VOCs) in a thermal power station centralized area: A study in Shuozhou, China[J]. Environmental Pollution, 2017, 223: 295-304. doi: 10.1016/j.envpol.2017.01.026 [10] CHENG J, LIU J, WANG T, et al. Reductions in volatile organic compound emissions from coal-fired power plants by combining air pollution control devices and modified fly ash[J]. Energy & Fuels, 2019, 33(4): 2926-2933. [11] PUDASAINEE D, KIM J H, LEE S H, et al. Hazardous air pollutants emission from coal and oil-fired power plants[J]. Asia-Pacific Journal of Chemical Engineering, 2010, 5(2): 299-303. doi: 10.1002/apj.268 [12] KÜÇÜKAÇIL ARTUN G, POLAT N, YAY O D, et al. An integrative approach for determination of air pollution and its health effects in a coal fired power plant area by passive sampling[J]. Atmospheric Environment, 2017, 150: 331-345. doi: 10.1016/j.atmosenv.2016.11.025 [13] 吕太, 贺培叶. 防止中小型锅炉脱硫除尘一体化系统中引风机积灰振动的研究[J]. 环境工程学报, 2016, 10(1): 272-276. doi: 10.12030/j.cjee.20160144 [14] 刘含笑, 陈招妹, 王少权, 等. 燃煤电厂SO3排放特征及其脱除技术[J]. 环境工程学报, 2019, 13(5): 1128-1138. doi: 10.12030/j.cjee.201812137 [15] LIU J, WANG T, CHENG J, et al. Distribution of organic compounds in coal-fired power plant emissions[J]. Energy & Fuels, 2019, 33(6): 5430-5437. [16] LI Z, CHEN L, LIU S, et al. Characterization of PAHs and PCBs in fly ashes of eighteen coal-fired power plants[J]. Aerosol and Air Quality Research, 2017, 16(12): 3175-3186. doi: 10.4209/aaqr.2016.10.0430 [17] 马宪梅, 黄晓飞. 燃煤电厂超低排放脱硫除尘技术路线探讨[J]. 环境与发展, 2020, 32(9): 73-74. [18] 崔进, 刘成鑫, 陈姗, 等. 气袋采样/热脱附-气相色谱-质谱法检测儿童地垫中35种挥发性有机物[J]. 分析试验室, 2020, 39(6): 700-705. [19] 李孜军, 孙瑞雪. 室内空气总挥发性有机物检测的热解吸参数优化[J]. 环境工程学报, 2012, 10(6): 3689-3692. [20] 金侃, 张军, 郑成航, 等. 百万燃煤机组烟气污染物超低排放改造费效评估[J]. 环境工程学报, 2017, 11(2): 1061-1068. doi: 10.12030/j.cjee.201510024 [21] 尹连庆, 殷春肖, 赵浩宁. 燃煤工业锅炉PM2.5排放规律[J]. 环境工程学报, 2014, 8(5): 2020-2024. [22] LIU J, WANG J, CHENG J, et al. Distribution and emission of speciated volatile organic compounds from a coal-fired power plant with ultra-low emission technologies[J]. Journal of Cleaner Production, 2020, 264(121686): 1-9. [23] CÓRDOBA P. Status of flue gas desulphurisation (FGD) systems from coal-fired power plants: Overview of the physic-chemical control processes of wet limestone FGDs[J]. Fuel, 2015, 144: 274-2786. doi: 10.1016/j.fuel.2014.12.065 [24] MEIJ R, TE WINKEL H. The emissions of heavy metals and persistent organic pollutants from modern coal-fired power stations[J]. Atmospheric Environment, 2007, 41(40): 9262-9272. doi: 10.1016/j.atmosenv.2007.04.042 [25] MA S, LIU C, SUN Y, et al. Advanced treatment technology for FGD wastewater in coal-fired power plants: Current situation and future prospects[J]. Desalination and Water Treatment, 2019, 167: 122-1232. doi: 10.5004/dwt.2019.24630 [26] 徐煜, 吴家全, 衣守志. 芳烃化合物水溶解度及分配系数的估算[J]. 环境科学与技术, 2010, 33(7): 111-114. [27] GARCIA J P, BEYNE-MASCLET S, MOUVIER G, et al. Emissions of volatile organic compounds by coal-fired power stations[J]. Atmospheric Environment, 1992, 26(9): 1589-1597. doi: 10.1016/0960-1686(92)90059-T [28] FERNÁNDEZ-MARTÍNEZ G, LÓPEZ-MAHÍA P, MUNIATEGUI-LORENZO S, et al. Distribution of volatile organic compounds during the combustion process in coal-fired power stations[J]. Atmospheric Environment, 2001, 35(33): 5823-5831. doi: 10.1016/S1352-2310(01)00282-5 [29] 余化龙. 燃煤过程中挥发性有机物排放特征研究[D]. 北京: 华北电力大学, 2018. [30] HUI L, LIU X, TAN Q, et al. Characteristics, source apportionment and contribution of VOCs to ozone formation in Wuhan, Central China[J]. Atmospheric Environment, 2018, 192: 55-71. doi: 10.1016/j.atmosenv.2018.08.042 [31] 李国昊, 魏巍, 魏峰, 等. 夏秋季节焦化厂附近大气中臭氧及其前体物变化特征和臭氧生成潜势分析[J]. 环境工程学报, 2014, 8(3): 1130-1138. [32] CARTER W L. Development of ozone reactivity scales for volatile organic compounds[J]. Technical Paper, 1994, 44: 881-899. [33] GENG C, YANG W, SUN X, et al. Emission factors, ozone and secondary organic aerosol formation potential of volatile organic compounds emitted from industrial biomass boilers[J]. Journal of Environmental Sciences(China), 2019, 83: 64-72. doi: 10.1016/j.jes.2019.03.012 [34] OU J, ZHENG J, LI R, et al. Speciated OVOC and VOC emission inventories and their implications for reactivity-based ozone control strategy in the Pearl River Delta region, China[J]. Science of the Total Environment, 2015, 530/531: 393-402. doi: 10.1016/j.scitotenv.2015.05.062 [35] BARABAD M L M, JUNG W, VERSOZA M E, et al. Emission characteristics of particulate matter, volatile organic compounds, and trace elements from the combustion of coals in Mongolia[J]. International Journal of Environmental Research and Public Health, 2018, 15(8): 1-11. [36] SANTOS C Y M, AZEVEDO D D, AQUINO NETO F R. Atmospheric distribution of organic compounds from urban areas near a coal-fired power station[J]. Atmospheric Environment, 2004, 38(9): 1247-1257. doi: 10.1016/j.atmosenv.2003.11.026 [37] KLIMONT Z, STREETS DAVID G, GUPTA S, et al. Anthropogenic emissions of non-methane volatile organic compounds in China[J]. Atmospheric Environment, 2002, 36: 1309-1322. doi: 10.1016/S1352-2310(01)00529-5 [38] YAN Y, YANG C, PENG L, et al. Emission characteristics of volatile organic compounds from coal-, coal gangue-, and biomass-fired power plants in China[J]. Atmospheric Environment, 2016, 143: 261-269. doi: 10.1016/j.atmosenv.2016.08.052 [39] WU R, BO Y, LI J, et al. Method to establish the emission inventory of anthropogenic volatile organic compounds in China and its application in the period 2008–2012[J]. Atmospheric Environment, 2016, 127: 244-254. doi: 10.1016/j.atmosenv.2015.12.015 [40] QIU K, YANG L, LIN J, et al. Historical industrial emissions of non-methane volatile organic compounds in China for the period of 1980–2010[J]. Atmospheric Environment, 2014, 86: 102-112. doi: 10.1016/j.atmosenv.2013.12.026