-
氯霉素是一种用于治疗人类和动物细菌感染的典型广谱抗生素类药物[1]。尽管氯霉素在1994年就被一些场合禁止过,但由于其易获得和成本低,在我国很多养殖业中仍然被广泛使用,使得其在污水处理厂及地表水中频繁被检测到。研究表明在水环境中即使是痕量水平的氯霉素都可能会威胁到生态系统和人类健康[2]。因此,实现氯霉素的有效去除对于维护生态环境和人类身体健康具有十分重要的现实意义。
利用电芬顿技术可以对氯霉素进行高效地降解,但是这种工艺要求施加恒定电压,从而使得运行成本偏高[3]。生物电芬顿技术就是为解决这一问题而开发的,其为一种安全环保的新型生物发电技术[4]。生物电芬顿体系通常包括阳极室、阴极室和阳离子交换膜,产电微生物在阳极溶液中将化学能转换为电能,从而产生质子和电子(式(1)),随后通过阳离子交换膜和外部电路传输到阴极室,同时在阴极室曝入空气,使氧气获得电子和质子生成H2O2(式(2)),然后H2O2与Fe2+发生芬顿反应生成羟基自由基(·OH) (式(3)),而·OH作为强氧化性物种氧化甚至矿化有机物(式(4)~(5)),同时芬顿试剂Fe2+被氧化为Fe3+,随后又被从外电路传到阴极室的电子还原为Fe2+(式(6)),从而实现了Fe2+的循环使用,提高了芬顿试剂的利用率[5-6]。
生物电芬顿的阴极催化材料会影响其产电性能及降解污染物的性能。由于生物炭具有丰富的孔隙和较大的比表面积,可为氧的还原反应提供丰富的活性位点,缩短氧的还原-扩散路径[7],此外,有研究[8-9]表明,掺杂N、P、S、O和B等杂原子的碳材料可以作为电荷载体提供具有高电子亲合度的电子,并加速O2的吸收和还原。
本研究以黑豆为前驱体,制备了氮氧自掺杂型生物炭催化材料,考察了其负载于生物电芬顿阴极后的产电性能以及对氯霉素的降解效果。由于生物电芬顿体系存在氧供应不足、电压不稳定等问题,因此,认为生物电芬顿对氯霉素的降解作用有限,可以用于降解地表水中的低浓度氯霉素,故将其用于1 mg·L−1和50 mg·L−1的氯霉素降解。本研究以期为生物炭在生物电芬顿体系中的应用提供参考。
氮氧自掺杂生物质多孔炭修饰阴极的生物电芬顿产电及其对氯霉素的降解性能
Performance of electricity generation and chloramphenicol degradation by a bioelectro-Fenton cathode modified by N and O self-doped biomass porous carbon
-
摘要: 以黑豆为前驱体制备出具有多孔形貌的氮氧自掺杂生物炭(NOPC)材料,利用SEM、XPS、XRD、BET等手段对NOPC进行了表征和分析,并将NOPC负载于生物电芬顿体系的阴极碳布上,考察了生物电芬顿的产电性能及其对氯霉素的降解性能。结果表明:负载NOPC的生物电芬顿体系内阻明显降低,最大功率密度有所升高。与纯碳布电极相比,负载NOPC的生物电芬顿体系在24 h内H2O2的生成量增加了46.15%,且对50 mg·L−1和1 mg·L−1的氯霉素在24 h的降解率分别为36.38%和100%;而纯碳布的生物电芬顿体系在24 h内的降解率仅有28.45%和56.63%,负载NOPC的生物电芬顿体系对1 mg·L−1氯霉素的降解率提高了43.37%。以上结果表明NOPC不仅可以提高生物电芬顿体系的产电性能,还能提高氯霉素的降解效率,同时也表明生物电芬顿体系更适用于含有低浓度氯霉素水体的处理。Abstract: N and O self-doped biomass porous carbon (NOPC) was prepared using the black soya beans as precursor, and it was characterized and analyzed by SEM, XPS, XRD and BET. Then NOPC was loaded to onto the carbon cloth as bioelectric-Fenton cathode, the electrical production performance and chloramphenicol degradation effect were investigated. The result shows that the internal resistance of bioelectric-Fenton system decreased significantly and its maximum power density increased. Compared with carbon cloth cathode, the H2O2 production of bioelectro-Fenton with NOPC-loaded cathode increased by 46.15% after 24 h, for 50 mg·L−1 and 1 mg·L−1 chloramphenicol, the degradation rates were 36.38% and 100% at 24 h, respectively, while the chloramphenicol degradation rates were only 28.45% and 56.63% in the bioelectro-Fenton with carbon cloth at 24 h, respectively. The chloramphenicol degradation rate at the initial content of 1 mg·L−1 increased by 43.37% in bioelectro-Fenton with NOPC loaded cathode. The results indicate that NOPC could not only improve the performance of electricity generation , but also improve the chloramphenicol degradation rate in the bioelectro-Fenton system, and bioelectro-Fenton is more suitable for treating water with chloramphenicol of low initial concentration.
-
表 1 氯霉素降解过程中生物电芬顿电压输出对比
Table 1. Voltage output of bioelectro-Fenton during chloramphenicol degradation
阴极
材料氯霉素初始
质量浓度/(mg·L-1)平均输出
电压/mV最大输出
电压/mV最小输出
电压/mVNOPC 1 343.465 4 374.983 316.017 50 336.782 382.622 280.676 碳布 1 214.107 2 243.282 179.148 50 238.296 4 309.735 138.512 表 2 不同阴极材料在不同氯霉素初始浓度下的表观速率常数
Table 2. Apparent rate constants of different cathode at different initial chloramphenicol concentrations
阴极材料 氯霉素初始
质量浓度/(mg·L−1)Kapp/h−1 R2 NOPC 1 0.188 9 0.982 6 50 0.020 4 0.995 9 碳布 1 0.045 4 0.924 6 50 0.018 4 0.864 7 -
[1] LIANG B, CHENG H Y, KONG D Y, et al. Accelerated reduction of chlorinated nitroaromatic antibiotic chloramphenicol by biocathode[J]. Environmental Science & Technology, 2013, 47(10): 5353-5361. [2] 罗义, 周启星. 抗生素抗性基因(ARGs)——一种新型环境污染物[J]. 环境科学学报, 2008, 28(8): 13-19. doi: 10.3321/j.issn:0253-2468.2008.08.002 [3] HU X, DENG Y, ZHOU J T, et al. N- and O self-doped biomass porous carbon cathode in an electro-Fenton system for chloramphenicol degradation[J]. Separation and Purification Technology, 2020, 251: 117376. doi: 10.1016/j.seppur.2020.117376 [4] SATHE S M, CHAKRABORTY I, DUBEY B K, et al. Microbial fuel cell coupled Fenton oxidation for the cathodic degradation of emerging contaminants from wastewater: Applications and challenges[J]. Environmental Research, 2022, 204: 112135. doi: 10.1016/j.envres.2021.112135 [5] ZHU X P, Ni J R. Simultaneous processes of electricity generation and p-nitrophenol degradation in a microbial fuel cell[J]. Electrochemistry Communications, 2009, 11(2): 274-277. doi: 10.1016/j.elecom.2008.11.023 [6] FENG C H, LI F B, MAI H J, et al. Bio-electro-Fenton process driven by microbial fuel cell for wastewater treatment[J]. Environmental Science and Technology, 2010, 44(5): 1875-1880. doi: 10.1021/es9032925 [7] LI Y, FU Z Y, SU B L. Hierarchically structured porous materials for energy conversion and storage[J]. Advanced Functional Materials, 2012, 22: 4634-4667. doi: 10.1002/adfm.201200591 [8] GONG K P, DU F, XIA Z H, et al. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction[J]. Science, 2009, 323: 760-764. doi: 10.1126/science.1168049 [9] ZHANG J T, DAI L M. Heteroatom-doped graphitic carbon catalysts for efficient electrocatalysis of oxygen reduction reaction[J]. ACS Catalysis, 2015, 5(12): 7244-7253. doi: 10.1021/acscatal.5b01563 [10] CHENG S, LIU H, LOGAN B E. Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing[J]. Environmental Science & Technology, 2006, 40(7): 2426-32. [11] HE Z, WAGNER N, MINTEER S D, et al. An upflow microbial fuel cell with an interior cathode: Assessment of the internal resistance by impedance spectroscopy[J]. Environmental Science & Technology, 2006, 40(17): 5212-5217. [12] CHEN S, DUAN J J, JARONIEC M, et al. Nitrogen and oxygen dual-doped carbon hydrogel film as a substrate-free electrode for highly efficient oxygen evolution reaction[J]. Advanced Materials, 2014, 26: 2925-2930. doi: 10.1002/adma.201305608 [13] ZHU H, YIN J, WANG X L, et al. Microorganism-derived heteroatom-doped carbon materials for oxygen reduction and supercapacitors[J]. Advanced Functional Materials, 2013, 23: 1305-1312. doi: 10.1002/adfm.201201643 [14] LIU Y, CHEN S, QUAN X, et al. Efficient mineralization of perfluorooctanoate by electro-Fenton with H2O2 electro-generated on hierarchically porous carbon[J]. Environmental Science & Technology, 2015, 49(22): 13528-13533. [15] 周汉. 聚卟啉修饰电极催化氧还原反应的研究[D]. 重庆: 重庆大学, 2015.