-
随着新型冠状病毒(corona virus disease 2019, COVID-19)在全球持续肆虐,治疗和预防COVID-19的药物使用量越来越大,但人体可以吸收利用的药物剂量较少。大部分未被利用的药物会通过人体排泄进入生态环境,经过不断的生物富集作用在食物链中逐步转移、积累和放大,对人类的健康造成了威胁[1]。其中,布洛芬(ibuprofen,IBP)是典型的抗炎和退热药物,是英国药品机构推荐治疗COVID-19症状的药物之一[2-3]。有研究表明,欧洲、美洲和亚洲国家水体中可检测到的IBP质量浓度分别为95 μg·L−1、208 ng·L−1和92 μg·L−1[4]。由于传统水处理工艺无法有效去除IBP,国内外学者对IBP降解进行了大量的研究,包括臭氧氧化法[5]、光催化氧化法[6]、电化学氧化法[7]、类芬顿法[8]等,其中非均相催化臭氧化技术具有污染物去除彻底、催化剂易回收和无二次污染等优点受到广大研究者的青睐。
目前,金属氧化物、碳材料、天然矿物以及硅基介孔分子筛等材料被广泛应用于非均相催化臭氧化领域[9-10]。由于非均相催化臭氧化以界面反应为主[10],具有较高比表面积、长程有序孔道结构以及优异稳定性的硅基介孔分子筛(包括MCM-41、MCM-48和SBA-15等)受到了广泛关注。纯的硅基介孔分子筛缺少酸性位点,常需与金属活性组分复合才具备活化臭氧(O3)的能力[11]。在金属改性硅基介孔分子筛上,金属阳离子等路易斯(Lewis)酸位点可以吸附O3并将其转化为氧化能力更强的羟基自由基(·OH)[12]。铁(Fe)作为地壳中含量第二高的金属元素,具有价态多、氧化还原能力强、价廉易得和无毒性等优点,因此,在催化领域被大量使用[13]。其中,Fe-MCM-41是应用比较广泛的O3催化剂[9-10]。但Fe-MCM-41表面酸性较弱,对O3利用率低;同时Fe-MCM-41表面对·OH束缚能力差,·OH等短寿命组分向溶液中扩散损耗较大。现有研究表明,解决这2个问题的关键是提高催化剂表面Lewis酸性,这不仅可以提升O3向催化剂表面传质的效率,而且可以加速O3转化为·OH的过程[9-10]。非均相催化臭氧化反应是由溶液反应和界面反应共同参与的体系,FENG等[14]认为强Lewis酸性位点会减少催化剂表面的·OH向溶液中扩散,有利于污染物的界面氧化;而中酸性Lewis酸位点产生的·OH会迅速脱离催化剂表面参与溶液反应。FENG等构建了具有中酸位点的Fe-Mn/MCM-41,提高了溶液中甲基橙的去除效率。而现有研究关注于构建具有强酸位点的催化剂,提高界面反应效率[9-10]。但这些催化剂无法同时增强界面反应和溶液反应的效率,对污染物的单一降解途径会极大限制催化剂的应用。因此,如何构建一种同时具有强酸和中酸位点的催化剂是亟待解决的难题。
近年来,许多研究发现电负性差异较大的2种金属可以引起催化剂内部电子重排,从而构建拥有贫富电子双中心的催化剂。张帆等通过电负性差异较大的Fe和Ti在Al2O3表面构建了Fe富电子中心和Ti贫电子中心[15]。富电子中心可以活化O3产生·OH,加快IBP降解,同时IBP作为电子供体在贫电子中心被氧化去除,大大提高了对IBP的去除效率。XIE等合成了具有贫电子Cu中心和富电子Bi中心的新型类芬顿催化剂γ-Cu-Al2O3-Bi12O15Cl6,H2O2可以同时在贫富电子中心通过不同途径被活化为·OH,加快了酚类化合物的选择性降解[16]。有研究表明,锌(Zn)是一种活性比Fe更强的金属[17],它在进入二氧化硅骨架后可以表现出比Fe更强的酸性[18]。同时,Zn的电负性为1.65,而Fe的电负性为1.83。因此,在Fe-MCM-41的骨架中引入Zn后,理论上可形成Fe富电子中心和Zn贫电子中心。FENG等研究发现,贫电子位点的强正电性会表现出强酸性[14]。因此,可以实现具有中等酸性的Fe位点和强酸性的Zn位点催化剂的目标。
基于此,本文通过一步水热合成方法研制了具有双酸性中心Fe和Zn的Fe-Zn-MCM-41催化剂。使用XRD、N2吸附-脱附等温线、TEM、XPS等手段对Fe-Zn-MCM-41进行表征;通过对比不同臭氧化体系中IBP去除率和O3利用率,探究Fe-Zn-MCM-41的活性;通过pyridine-FTIR、自由基淬灭实验、ATR-FTIR以及电化学实验揭示Fe-Zn-MCM-41催化臭氧化去除IBP机理;同时评价了Fe-Zn-MCM-41的稳定性和重复使用性;最后利用GC-MS检测了IBP降解的中间产物,并推导出Fe-Zn-MCM-41/O3降解IBP路径。
铁锌共掺杂MCM-41构建双酸性中心及其催化臭氧化布洛芬
Dual acidity centers constructed by Fe and Zn co-doped MCM-41 for catalytic ozonation of ibuprofen
-
摘要: Fe-MCM-41作为臭氧(O3)催化剂被广泛关注,但其存在O3利用率和界面反应效率较低等缺点,这极大限制了其在非均相催化臭氧化领域的应用。为解决这一问题,通过一步水热合成方法制备了具有双酸性中心的Fe-Zn-MCM-41催化剂。不同臭氧化体系对布洛芬(IBP)降解结果表明,反应30 min后Fe-Zn-MCM-41/O3降解IBP的表观速率常数为0.035 min−1,分别是单独O3、MCM-41/O3、Fe-MCM-41/O3和Zn-MCM-41/O3的2.9、2.9、1.9和1.6倍。XRD、N2吸附-脱附、TEM和XPS等表征结果证明,Fe和Zn成功进入MCM-41骨架内并分别作为中酸位点和强酸位点。中酸位点产生的·OH迅速扩散到溶液中,加快溶液中IBP的去除;强酸位点产生的·OH键合在Fe-Zn-MCM-41表面,促进IBP界面氧化。LSV和EIS结果表明,Fe-Zn-MCM-41不仅具有较好的电子传递能力,而且拥有较强的O3亲和力。Fe-Zn-MCM-41具有较好的循环使用性能,经过5次回收使用后,Fe-Zn-MCM-41/O3仍可去除55.1%的IBP,去除率远高于其他臭氧化体系。以上研究结果可为非均相催化臭氧化体系在水环境污染控制领域的应用提供参考。Abstract: The application of Fe-MCM-41 as O3 catalyst had attracted extensive attentions, but the shortcomings such as low O3 utilization rate and poor interfacial reaction efficiency greatly limited its further application in heterogeneous catalytic ozonation. To solve these problems, Fe-Zn-MCM-41 with dual acidity centers was prepared through a one-step hydrothermal method. It was found that the apparent rate constant of IBP removal in Fe-Zn-MCM-41/O3 was 0.035 min−1 after 30 min reaction, which was 2.9, 2.9, 1.9 and 1.6 times of O3 alone, MCM-41/O3、Fe-MCM-41/O3 and Zn-MCM-41/O3, respectively. XRD, N2 adsorption-desorption, TEM and XPS results indicated that Fe and Zn successfully entered the framework of MCM-41 and acted as medium acid sites and strong acid sites, respectively. The medium acid sites produced more ·OHfree to accelerate the bulk reaction, and the strong acid sites generated more ·OHad bonding on the surface of Fe-Zn-MCM-41 to promote the interfacial reaction. LSV and EIS showed that Fe-Zn-MCM-41 not only possessed a better electron transfer ability, but also had a stronger affinity with O3 than others. The IBP removal still could reach 55.1% in Fe-Zn-MCM-41/O3 after five recycles, which indicated that Fe-Zn-MCM-41 had a better recycling ability. This work provided a reference for the study of heterogeneous catalytic ozonation and its applications in environmental remediation.
-
Key words:
- catalytic ozonation /
- iron-zinc bimetal modification /
- ibuprofen /
- Lewis acidity /
- MCM-41
-
表 1 不同催化剂的比表面积、孔径和孔容
Table 1. Surface area, pore diameter and pore volume of different catalysts
样品 比表面积/(m2·g−1) 孔径/nm 孔容/(cm3·g−1) MCM-41 1 171.62 3.33 0.98 Fe-MCM-41 1 136.27 3.36 0.82 Zn-MCM-41 1 112.34 3.40 0.57 Fe-Zn-MCM-41 831.60 3.62 0.50 表 2 不同催化剂的酸量
Table 2. Acid amount of different catalysts
样品 50 ℃ 200 ℃ 350 ℃ Brønsted酸/
(μmol·g−1)Lewis酸/
(μmol·g−1)Brønsted酸/
(μmol·g−1)Lewis酸/
(μmol·g−1)Brønsted酸/
(μmol·g−1)Lewis酸/
(μmol·g−1)Fe-MCM-41 — 97.28 — 17.37 — 3.84 Zn-MCM-41 — 118.78 — 21.46 — 4.08 Fe-Zn-MCM-41 20.83 165.81 12.08 33.55 4.21 7.97 注:“—”表示低于检测限。 表 3 回用Fe-Zn-MCM-41的结构特征
Table 3. Textural properties of the recycled Fe-Zn-MCM-41
催化剂使用次数 比表面积/(m2·g−1) 孔径/nm 孔容/(cm3·g−1) 第1次 831.60 3.62 0.50 第2次 817.13 3.55 0.47 第5次 782.87 3.28 0.39 -
[1] 罗孝俊, 麦碧娴著. 新型持久性有机污染物的生物富集[M]. 北京: 科学出版社, 2017. [2] TORJESEN I. Covid-19: Ibuprofen can be used for symptoms, says UK agency, but reasons for change in advice are unclear[J]. BMJ, 2020, 369: 15-25. [3] RINOTT E, KOZER E, SHAPIRA Y, et al. Ibuprofen use and clinical outcomes in COVID-19 patients[J]. Clinical Microbiology and Infection, 2020, 26: 1255-1259. [4] BRILLAS E. A critical review on ibuprofen removal from synthetic waters, natural waters, and real wastewaters by advanced oxidation processes[J]. Chemosphere, 2022, 286: 1318-1339. [5] JOTHINATHAN L, HU J. Kinetic evaluation of graphene oxide based heterogenous catalytic ozonation for the removal of ibuprofen[J]. Water Research, 2018, 134: 63-73. doi: 10.1016/j.watres.2018.01.033 [6] LIU N, WANG J, WU J, et al. Magnetic Fe3O4@MIL-53(Fe) nanocomposites derived from MIL-53(Fe) for the photocatalytic degradation of ibuprofen under visible light irradiation[J]. Materials Research Bulletin, 2020, 132: 1110-11128. [7] LI X, MA F, LI Y, et al. Enhanced mechanisms of electrocatalytic-ozonation of ibuprofen using a TiO2 nanoflower-coated porous titanium gas diffuser anode: Role of TiO2 catalysts and electrochemical action in reactive oxygen species formation[J]. Chemical Engineering Journal, 2020, 389: 1244-1261. [8] HUSSAIN S, ANEGGI E, BRIGUGLIO S, et al. Enhanced ibuprofen removal by heterogeneous-Fenton process over Cu/ZrO2 and Fe/ZrO2 catalysts[J]. Journal of Environmental Chemical Engineering, 2020, 8: 1035-1056. [9] YU G, WANG Y, CAO H, et al. Reactive oxygen species and catalytic active sites in heterogeneous catalytic ozonation for water purification[J]. Environmental Science & Technology, 2020, 54: 5931-5946. [10] WANG J, CHEN H. Catalytic ozonation for water and wastewater treatment: Recent advances and perspective[J]. Science of the Total Environment, 2020, 704: 1352-1369. [11] CHEN W R, LI X K, LIU M, et al. Effective catalytic ozonation for oxalic acid degradation with bimetallic Fe-Cu-MCM-41: Operation parameters and mechanism[J]. Journal of Chemical Technology & Biotechnology, 2017, 92: 2862-2869. [12] LIU D P, LIN M X, CHEN W R, et al. Enhancing catalytic ozonation activity of MCM-41 via one-step incorporating fluorine and iron: The interfacial reaction induced by hydrophobic sites and Lewis acid sites[J]. Chemosphere, 2022, 292: 1335-1349. [13] RUAN Y, KONG L, ZHONG Y, et al. Review on the synthesis and activity of iron-based catalyst in catalytic oxidation of refractory organic pollutants in wastewater[J]. Journal of Cleaner Production, 2021, 321: 1289-1304. [14] FENG C, ZHAO J, QIN G, et al. Construction of the Fe3+-O-Mn3+/2+ hybrid bonds on the surface of porous silica as active centers for efficient heterogeneous catalytic ozonation[J]. Journal of Solid State Chemistry, 2021, 300: 1222-1236. [15] 张帆, 宋阳, 胡春, 等. 铁钛共掺杂氧化铝诱发表面双反应中心催化臭氧化去除水中污染物[J]. 环境科学, 2021, 42: 2360-2369. doi: 10.13227/j.hjkx.202009099 [16] XIE Z, ZHOU J, WANG J, et al. Novel Fenton-like catalyst γ-Cu-Al2O3-Bi12O15Cl6 with electron-poor Cu centre and electron-rich Bi centre for enhancement of phenolic compounds degradation and H2O2 utilization: The synergistic effects of σ-Cu-ligand, dual-reaction centres and oxygen vacancies[J]. Applied Catalysis B:Environmental, 2019, 253: 28-40. doi: 10.1016/j.apcatb.2019.04.032 [17] ZHANG F, WEI C, HU Y, et al. Zinc ferrite catalysts for ozonation of aqueous organic contaminants: phenol and bio-treated coking wastewater[J]. Separation and Purification Technology, 2015, 156: 625-635. doi: 10.1016/j.seppur.2015.10.058 [18] CONNELL G, DUMESIC J A. The generation of Brnsted and Lewis acid sites on the surface of silica by addition of dopant cations[J]. Journal of Catalysis, 1987, 105: 285-298. doi: 10.1016/0021-9517(87)90059-5 [19] MENG F, ZHANG S, ZHANG M, et al. The mechanism of Ce-MCM-41 catalyzed peroxone reaction into •OH and •O2− radicals for enhanced NO oxidation[J]. Molecular Catalysis, 2022, 518: 1121-1134. [20] ZHENG L, YU S, LU X, et al. Two-dimensional bimetallic Zn/Fe-metal-organic framework (MOF)-derived porous carbon nanosheets with a high density of single/paired Fe atoms as high-performance oxygen reduction catalysts[J]. ACS Applied Materials & Interfaces, 2020, 12: 13878-13887. [21] FENG C, DIAO P. Nickel foam supported NiFe2O4-NiO hybrid: A novel 3D porous catalyst for efficient heterogeneous catalytic ozonation of azo dye and nitrobenzene[J]. Applied Surface Science, 2021, 541: 1486-1503. [22] HACHEMAOUI M, MOLINA C B, BELVER C, et al. Metal-loaded mesoporous MCM-41 for the catalytic wet peroxide oxidation (CWPO) of acetaminophen[J]. Catalysts, 2021, 11: 219-230. doi: 10.3390/catal11020219 [23] WANG B, ZHU Y, QIN Q, et al. Development on hydrophobic modification of aluminosilicate and titanosilicate zeolite molecular sieves[J]. Applied Catalysis A:General, 2021, 611: 1179-1192. [24] LI S Y, HUANG J, LI X K, et al. The relation of interface electron transfer and PMS activation by the H-bonding interaction between composite metal and MCM-48 during sulfamethazine ozonation[J]. Chemical Engineering Journal, 2020, 398: 1255-1269. [25] CHEN W R, BAO Y, LI X K, et al. Role of Si-F groups in enhancing interfacial reaction of Fe-MCM-41 for pollutant removal with ozone[J]. Journal of Hazardous Materials, 2020, 393: 1223-1237. [26] ZUO X, MA S, WU Q, et al. Nanometer CeO2 doped high silica ZSM-5 heterogeneous catalytic ozonation of sulfamethoxazole in water[J]. Journal of Hazardous Materials, 2021, 411: 1250-1262. [27] CAI C, DUAN X, XIE X, et al. Efficient degradation of clofibric acid by heterogeneous catalytic ozonation using CoFe2O4 catalyst in water[J]. Journal of Hazardous Materials, 2021, 410: 1246-1264. [28] YU D, WU M, HU Q. , et al. Iron-based metal-organic frameworks as novel platforms for catalytic ozonation of organic pollutant: Efficiency and mechanism[J]. Journal of Hazardous Materials, 2019, 367: 456-464. doi: 10.1016/j.jhazmat.2018.12.108 [29] LI S Y, WANG J, YE Y, et al. Composite Si-O-metal network catalysts with uneven electron distribution: Enhanced activity and electron transfer for catalytic ozonation of carbamazepine[J]. Applied Catalysis B:Environmental, 2020, 263: 1183-1197. [30] REN Z, ROMAR H, VARILA T, et al. Ibuprofen degradation using a Co-doped carbon matrix derived from peat as a peroxymonosulphate activator[J]. Environmental Research, 2021, 193: 1105-1114. [31] LI Z, WANG Y, Guo H, et al. Insights into water film DBD plasma driven by pulse power for ibuprofen elimination in water: Performance, mechanism and degradation route[J]. Separation and Purification Technology, 2021, 277: 1194-1121.