-
河网具有重要的环境、水文和社会功能[1]。平原河网地区是河流网状结构和城镇化特征显著的区域[2]。随着城市化水平的提高,平原河网地区河流生态状况水平普遍降低[3]。近年来,随着河湖环境污染综合整治工作的开展,尤其是环境基础设施建设、产业结构调整、水质提升等项目的实施,一些平原河网中小流域水系的水环境质量有所改善。然而,平原河网水系的水环境问题依然突出。如水体流速较慢且水流方向不定,水体自净能力差,污染物易累积[4];周边区域土地利用现状较复杂,面源污染严重[2];水体生物多样性低,水生态系统脆弱[5];水体污染负荷高且呈分散污染的特点,难管理;水系相互连通,相互影响,成效难以长久维持。平原河网水污染治理对于我国水环境治理至关重要。太湖流域位于长三角中心,为我国经济核心区之一[6],是典型的平原河网地区。该地区存在河网萎缩、水系连通受阻等问题[7],个别城区的河网污染亦很严重[8]。梁塘河位于中国民族工业和乡镇工业的摇篮江苏省无锡市,是太湖新城与老城的界河。该河西起五里湖穿过老城区、工业区,向东汇入京杭大运河。梁塘河两岸城市化水平高、人口密集。
潮汐式生态滤床已应用于生活污水治理、雨水回用及小范围河道生态治理中。通过选择最优人工湿地类型,选择适当进水方式、基质及植物,可组成特定生态滤床。该技术有如下优势:能适应较高污染负荷;能长久有效运行,维护管理方便;滤床进水、出水带动水体流动,可提高水体自净能力。因此,潮汐式生态滤床可应用于平原河网污染河流治理中。
本研究以梁塘河水系为例开展平原河网水环境生态治理工作,长期连续监测梁塘河NH4+-N质量浓度 ([NH4+-N]) 、TN、TP、高锰酸钾指数 (IMn) 等水质指标,并采集潮汐式生态滤床混合层基质样本进行微生物群落分析,为提升平原河网水体水质,特别是位于城区的平原河网水环境提供示范,同时也有助于推动其他类似水体的水污染治理,具有很好的参考和借鉴价值。
潮汐式生态滤床在平原河网地区污染河流治理中的应用
Practice of tidal ecological filtering bed (TEF) to process in restoration polluted river in plain river network area
-
摘要: 以梁塘河治理措施中的主体工程潮汐式生态滤床为研究对象,考察其对平原河网地区污染河流中的N、P及有机污染物等的去除效果,并通过高通量测序技术分析潮汐式生态滤床混合层的微生物群落组成。结果表明,以潮汐式生态滤床为主体的治理工程运行稳定,河流水质趋好,且在受到污染冲击后,水质能迅速恢复。潮汐式生态滤床对[NH4+-N]有很好的去除效果,[NH4+-N]去除率最高为99.42%,平均去除率为80.94%。潮汐式生态滤床对TP和IMn也有一定的去除效果,平均去除率为34.37%和35.65%。潮汐式生态滤床内部硝化作用明显,微生物群落分析结果表明,滤床内主要的优势菌属是norank_f_norank_o_Chloroplast (1.72%~12.61%) 和硝化螺旋菌属 (Nitrospiria,1.75%~8.75%) 。norank_f_norank_o_Chloroplast作为第一优势菌属,其相对丰度远超其他菌属,且随着滤床的持续运行,具有硝化作用的硝化螺旋菌属相对丰度增长显著。微生物群落相似性和差异性分析结果表明,滤床微生物群落结构稳定,不受季节、温度的影响,尽管运行时长对滤床内部群落组成造成一定差异,但并不存在显著性。本研究以梁塘河水系为例开展水环境生态治理,一方面旨在提升梁塘河水环境质量,另一方面也为平原河网地区,尤其是位于城区的平原河网地区河流生态治理提供示范参考。Abstract: The tidal ecological filter bed (TEF), which is the main processt of Liangtang River restoration, was researched. The effect on the removal of nitrogen, phosphorus and organic pollutants in polluted rivers in plain river network area were investigated, and the microbial community composition of the TEF mixed layer was analyzed by high-throughput sequencing technology. The results showed that the operation of the TEF was stable, the water quality of the river tended to be better, and the water quality can recover quickly after being impacted by pollution. High NH4+-N removal efficiency of TEF was detected, the highest removal rate of NH4+-N was 99.45% and the average removal rate was 81.31%. The average removal rates of TP and IMn were 33.21% and 35.11%. Nitrification in the TEF was obvious, the microbial community analysis results showed that the dominant bacteria in the TEF were norank_f_norank_o_Chloroplast (1.72%-12.61%) and Nitrospiria, 1.75%~8.75%). As the first dominant bacteria, norank_f_norank_o_Chloroplas had a higher relative abundance than other bacteria. The relative abundance of Nitrospiria, which has nitrification, increased significantly with the continuous operation of the TEF. The results of similarity and difference analysis showed that the microbial community structure in the TEF was stable and was not affected by season and temperature. Although the running time had some difference on the community composition in the TEF, there was no significant difference. This study took Liangtang River as an example to carry out ecological management of water environment. On the one hand, it aimed to improve the water environment quality of Liangtang River; on the other hand, it also provided an example for ecological management of rivers in plain river network areas, especially those in urban plain river network areas, which had good reference significance.
-
表 1 治理前梁塘河水质监测数据
Table 1. The water quality of Liangtang River before treatment
月份 [NH4+-N]/(mg·L−1) TP/(mg·L−1) IMn/(mg·L−1) 1月 4.63 0.17 7.71 2月 2.45 0.17 7.14 3月 1.75 0.19 5.62 4月 1.28 0.30 11.28 5月 3.04 0.18 6.30 6月 2.57 0.16 9.54 7月 1.78 0.32 10.57 8月 1.87 0.22 6.85 9月 2.33 0.17 9.43 10月 1.76 0.38 10.21 11月 2.31 0.33 18.34 12月 0.14 0.06 4.26 平均 2.16 0.22 8.94 表 2 潮汐式生态滤床微生物多样性指数和丰富度指数
Table 2. Microbial diversity index and richness index of the TEF
Sample 测序数 丰富度指数 多样性指数 Coverage Sobs Ace Chao Shannon Simpson S1 54 080 1 994 2 598.71 2 599.58 6.14 0.006 6 0.975 9 S2 58 427 2 048 2 728.82 2 680.70 5.94 0.016 1 0.974 0 S3 53 723 1 815 2 271.49 2 262.60 5.99 0.007 6 0.979 8 S4 58 480 2 235 2 805.91 2 784.68 6.46 0.003 9 0.975 0 W1 45 425 2 664 3 244.29 3 140.47 6.67 0.006 2 0.972 7 W2 46 763 2 469 3 104.70 3 099.81 6.48 0.008 0 0.972 3 W3 47 309 2 102 2 618.30 2 603.93 6.04 0.015 6 0.977 0 W4 45 850 2 449 2 984.38 2 935.38 6.63 0.003 8 0.974 7 -
[1] WU Y Q, YU X, YAN Z, et al. Evolution of river network due to urbanization in the Southeast Yinzhou Plain of Yongjiang River Basin, China[J]. Journal of Cleaner Production, 2022, 379(P1): 134718. [2] 钟胜财, 胡婷, 郑小燕, 等. 生态文明背景下平原地区中小流域水系生态修复实践应用[J]. 环境生态学, 2021, 3(7): 49-55. [3] LI R, SONG S P, YUE Z. Evaluation of river ecological status in the plain river network area in the context of urbanization: A case study of 21 Rivers’ ecological status in Jiangsu Province, China[J]. Ecological Indicators, 2022, 142: 109172. doi: 10.1016/j.ecolind.2022.109172 [4] 马迎群, 曹伟, 赵艳民, 等. 典型平原河网区水体富营养化特征、成因分析及控制对策研究[J]. 环境科学学报, 2022, 42(2): 174-183. [5] 严以新, 蒋小欣, 阮晓红, 等. 平原河网区城市水污染特征及控制对策研究[J]. 水资源保护, 2008, 24(5): 1-3. doi: 10.3969/j.issn.1004-6933.2008.05.001 [6] 魏蓥蓥, 李一平, 翁晟琳, 等. 太湖流域城市化对平原河网水系结构与连通性影响[J]. 湖泊科学, 2020, 32(2): 553-563. [7] 林芷欣, 许有鹏, 代晓颖, 等. 城市化进程对长江下游平原河网水系格局演变的影响[J]. 长江流域资源与环境, 2019, 28(11): 2612-2620. [8] 罗国根, 何丽琼. 平原河网水污染特性及防治实践[J]. 环境与发展, 2019, 31(6): 47-48. doi: 10.16647/j.cnki.cn15-1369/X.2019.06.029 [9] 郭赟, 黄晓峰, 李海妮, 等. 城市河道环保疏浚与水利疏浚效果研究——以无锡市梁塘河薛家浜为例[J]. 环境工程技术学报, 2020, 10(3): 400-405. doi: 10.12153/j.issn.1674-991X.20190104 [10] 刘帅, 文韬, 马竞, 等. 基于多参数评价体系的三种人工湿地净化能力研究[J]. 中国给水排水, 2019, 35(12): 55-59. doi: 10.19853/j.zgjsps.1000-4602.2019.12.011 [11] ILYAS H, HULLEBUSCH E. A review on the occurrence, fate and removal of steroidal hormones during treatment with different types of constructed wetlands[J]. Journal of Environmental Chemical Engineering, 2020, 8(3): 103793. doi: 10.1016/j.jece.2020.103793 [12] SUN W J, ZHENG Z. Research on removal of fluoroquinolones in rural domestic wastewater by vertical flow constructed wetlands under different hydraulic loads[J]. Chemosphere, 2022: 135100. [13] 郭鹤方, 甄志磊, 赵林婷, 等. 潮汐流-潜流人工湿地对城市污染水体中氮的去除[J]. 环境化学, 2021, 40(12): 3887-3897. doi: 10.7524/j.issn.0254-6108.2021053002 [14] 程果, 杨永哲, 高壮, 等. 人工湿地-EAS系统在污泥厌氧消化液脱氮中的应用[J]. 工业水处理, 2017, 37(12): 34-37. doi: 10.11894/1005-829x.2017.37(12).034 [15] LIU Y, LIU X H, LI K, et al. Removal of nitrogen from low pollution water by long-term operation of an integrated vertical-flow constructed wetland: Performance and mechanism[J]. Science of the Total Environment, 2019, 652: 977-988. doi: 10.1016/j.scitotenv.2018.10.313 [16] 丁达江, 杨永哲, 吴雷, 等. 分段进水对深层床潮汐流人工湿地硝化-反硝化性能的影响[J]. 水处理技术, 2016, 42(11): 104-109. [17] 丁海静, 丁彦礼, 游俊杰, 等. 基质结构对人工湿地运行性能的影响分析[J]. 水处理技术, 2018, 44(12): 91-95. [18] 许光明. 基质配置对人工湿地性能及温室气体通量的影响研究[D]. 青岛: 青岛大学, 2020. [19] BEHARRELL M. Planting, selection and plant establishment in constructed wetlands in a tropical environment[J]. Wetlands Ecosystems in Asia, 2004: 311-329. [20] 王文垅. 低温季节西伯利亚鸢尾人工湿地对污染河水的净化研究[D]. 郑州: 郑州大学, 2014. [21] COSKUN D, BRITTO D, SHI W M, et al. How plant root exudates shape the nitrogen cycle[J]. Trends in Plant Science, 2017, 22(8): 661-673. doi: 10.1016/j.tplants.2017.05.004 [22] 彭宁彦. 抚河故道湿地植物水环境效应研究[D]. 南昌: 南昌大学, 2019. [23] FLORES L, GARCÍA J, PENA R, et al. Constructed wetlands for winery wastewater treatment: A comparative Life Cycle Assessment[J]. Science of the Total Environment, 2019, 659: 1567-1576. doi: 10.1016/j.scitotenv.2018.12.348 [24] 李玲丽. 复合人工湿地脱氮途径及微生物多样性研究[D]. 重庆: 重庆大学, 2015. [25] 孙寓姣, 陈程, 丁爱中, 等. 官厅水库水质特征及水体微生物多样性的响应[J]. 中国环境科学, 2015, 35(5): 1547-1553. doi: 10.3969/j.issn.1000-6923.2015.05.035 [26] LV X F, YU J B, FU Y Q, et al. A meta-analysis of the bacterial and archaeal diversity observed in wetland soils[J]. The Scientific World Journal, 2014, 2014: 437684. [27] WANG S Q, CUI Y B, LI A M, et al. Deciphering of organic matter and nutrient removal and bacterial community in three sludge treatment wetlands under different operating conditions[J]. Journal of Environmental Management, 2020, 260(C): 110159. [28] 刘彩霞, 董玉红, 焦如珍. 森林土壤中酸杆菌门多样性研究进展[J]. 世界林业研究, 2016, 29(6): 17-22. doi: 10.13348/j.cnki.sjlyyj.2016.0041.y [29] 李金业, 陈庆锋, 李青, 等. 黄河三角洲滨海湿地微生物多样性及其驱动因子[J]. 生态学报, 2021, 41(15): 6103-6114. [30] 房昀昊. 人工湿地和自然湿地细菌群落结构特征比较[D]. 长沙: 湖南大学, 2018. [31] 鲜文东, 张潇橦, 李文均. 绿弯菌的研究现状及展望[J]. 微生物学报, 2020, 60(9): 1801-1820. doi: 10.13343/j.cnki.wsxb.20200463 [32] 周磊, 李育森, 黄仙德, 等. 洪潮江水库浮游细菌群落空间分布及其与环境因子的关系[J]. 微生物学报, 2020, 60(10): 2253-2264. doi: 10.13343/j.cnki.wsxb.20190597 [33] 马香菊. 天津滨海人工湿地细菌种群特征及氮降解菌筛选[D]. 北京: 中国环境科学研究院, 2021. [34] 洪义国, 焦黎静, 吴佳鹏, 等. 海洋亚硝酸盐氧化细菌的多样性分布及其生态功能研究进展[J]. 热带海洋学报, 2021, 40(2): 139-146. doi: 10.11978/2020043 [35] WU X J, PENG J J, LIU P F, et al. Metagenomic insights into nitrogen and phosphorus cycling at the soil aggregate scale driven by organic material amendments[J]. Science of the Total Environment, 2021, 785: 147329. doi: 10.1016/j.scitotenv.2021.147329 [36] 蔡广强, 张金松, 刘彤宙, 等. 活性炭-超滤深度处理工艺中细菌群落时空分布及动态变化规律[J]. 环境工程学报, 2021, 15(4): 1465-1472. doi: 10.12030/j.cjee.202008166 [37] GUO H H, GU J, WANG X J, et al. Microbial driven reduction of N2O and NH3 emissions during composting: Effects of bamboo charcoal and bamboo vinegar[J]. Journal of Hazardous Materials, 2020, 390: 121292. doi: 10.1016/j.jhazmat.2019.121292 [38] SHI S H, HE L, ZHOU Y, et al. Response of nitrogen removal performance and microbial community to a wide range of pH in thermophilic denitrification system[J]. Bioresource Technology, 2022, 352: 127061. doi: 10.1016/j.biortech.2022.127061 [39] 陈祥瑞, 杜强强, 韩文杰, 等. 基于纯膜MBBR的紧凑型污水处理BFM中试基质转化特性[J]. 环境工程学报, 2021, 15(11): 3741-3756. doi: 10.12030/j.cjee.202107149 [40] LIU B, YAO J, MA B, et al. Metal(loid)s diffusion pathway triggers distinct microbiota responses in key regions of typical karst non-ferrous smelting assembly[J]. Journal of Hazardous Materials, 2022, 423(PB): 127164. [41] ZHANG Q Y, GAO M, SUN X H, et al. Nationwide distribution of polycyclic aromatic hydrocarbons in soil of China and the association with bacterial community[J]. Journal of Environmental Sciences, 2023, 128: 1-11. doi: 10.1016/j.jes.2022.07.026 [42] YANG C D, LIU J J, YING H C, et al. Soil pore structure changes induced by biochar affect microbial diversity and community structure in an Ultisol[J]. Soil & Tillage Research, 2022, 224: 105505. [43] DENG L T, LIU W Y, CHANG N, et al. Disentangling the coupling relationships between functional denitrifiers and nitrogen transformation during cattle-manure and biochar composting: A novel perspective[J]. Bioresource Technology, 2022, 367: 128235. [44] YU J, GU J, WANG X J, et al. Effects of inoculation with lignocellulose-degrading microorganisms on nitrogen conversion and denitrifying bacterial community during aerobic composting[J]. Bioresource Technology, 2020, 313: 123664. doi: 10.1016/j.biortech.2020.123664 [45] ZHOU W J, QIN X, DEGUO L, et al. Effect of glucose on the soil bacterial diversity and function in the rhizosphere of Cerasus sachalinensis[J]. Horticultural Plant Journal, 2021, 7(4): 307-317. doi: 10.1016/j.hpj.2021.02.002