-
饮用水安全问题对人类健康至关重要[1-2]。近些年饮用水安全方面的挑战涵盖了微生物的方方面面,通常细菌在饮用水管网输配系统(drinking water distribution systems,DWDSs)的生物膜中自然定殖,并形成稳定的微生物生态系统[3-4],这种稳态环境有利于细菌的生长并能够给其在面对消毒过程时提供一定的庇护作用,进而带来包括致病菌、抗性基因等微生物风险问题[5]。因此,探究长期运行的DWDSs生物膜的细菌群落组成对于控制饮用水微生物风险具有重要意义。
抗生素抗性基因(antibiotic resistance genes,ARGs)会增强细菌宿主对抗生素的抵抗能力[6-7],细菌产生ARGs通常需要一个稳定的环境,而生物膜恰恰能提供这种“温床”[8-9],因此长期运行的DWDSs生物膜最终可能导致微生物的ARGs风险。此外,包括磺胺甲恶唑在内的抗生素在临床上的广泛使用,不可避免地导致抗生素污染[10-11]。抗生素不仅会影响细菌的生长过程,还会对ARGs的传播造成影响[12-13]。低剂量的抗生素(0.5 mg·L−1),如土霉素和磺胺甲恶唑,会加速活性氧的生成并促进ARGs的传播[14]。因此,探究微量抗生素对长期运行的DWDSs生物膜中ARGs的影响十分重要。饮用水处理和消毒被认为是20世纪最伟大的公共卫生成就之一[15],消毒工艺通常被认为能够抑制微生物的生长以及控制ARGs传播[16]。但同样有研究报道消毒对ARGs的形成存在促进作用[17-20]。因此,探究消毒是否对长期运行的DWDSs生物膜中的ARGs起到有效控制将有助于控制管网微生物风险。此外,消毒过程作为细菌遭受到的一种环境胁迫压力,往往会影响与细菌新陈代谢有关的功能基因[21]。但是关于功能基因与ARGs之间是否存在关系,目前研究报道不多。
因此,本研究的目的是利用模拟不同处理条件下的DWDSs,研究微量磺胺甲恶唑对细菌群落组成和ARGs的影响;通过长期模拟运行探究次氯酸钠消毒对ARGs的控制效果;最后通过相关性分析探讨功能基因与ARGs之间可能存在的关系,探讨消毒过程通过改变细菌的代谢过程从而影响细菌的生长进而控制ARGs传播。
微量磺胺甲恶唑对饮用水管网生物膜群落及抗性基因的影响与控制
Influence of micro-sulfamethoxazole on the biofilm bacterial communities and antibiotic resistance genes in drinking water distribution systems and its control
-
摘要: 针对饮用水管网系统可能存在的微生物风险问题,采用模拟不同处理条件下的输配水管道系统,通过宏基因组学分析探究微量磺胺甲恶唑以及次氯酸钠消毒对管道中生物膜与抗性基因组成的影响。结果表明,2 μg·L−1磺胺甲恶唑的添加对微生物群落以及抗性基因组成无明显影响,而浮霉菌门细菌表现出很强的抗次氯酸钠消毒能力。在未消毒条件下丰度前十的抗性基因与携带差异性抗性基因的细菌在消毒后丰度均明显有所下降,次氯酸钠消毒使ARGs总量下降了91.9%,因此,次氯酸钠消毒通过控制携带抗性基因物种从而有效控制群落抗性基因的传播。同时,通过组间显著性差异的功能基因与组间显著性差异的抗性基因相关性分析,功能基因的变化情况与抗性基因变化情况一致,因此,长期消毒改变了细菌群落组成及其功能,并最终影响抗性基因传播。这项研究有助于控制长期运行的饮用水管网输配系统中可能存在的包括抗药基因在内的微生物相关风险问题。Abstract: For the microbial risk in the water of drinking water distribution systems (DWDSs), metagenomic analysis was used to investigate the effects of micro-sulfamethoxazole and NaClO disinfection on biofilm bacterial communities and antibiotic resistance genes (ARGs) in the simulated DWDSs under different treatments. The experimental results showed that the bacterial communities and ARGs did not change significantly with addition of 2 μg-L−1 sulfamethoxazole, while the bacteria of Planctomycetes at phylum level showed a strong resistance to NaClO. The abundance of top ten ARGs and the bacteria carrying differential ARGs detected before disinfection both decreased significantly after disinfection. The total abundance of ARGs decreased by 91.9% due to the influence of NaClO. Therefore, the spread of ARGs was controlled by the NaClO disinfection because of its inhibition on the bacterial species carrying ARGs growth. Meanwhile, the correlation analysis between function genes and ARGs with significant differences among groups showed that the changes in function genes were consistent with changes in ARGs. Therefore, long disinfection changed the bacterial communities and their function, which affected the propagation of different ARGs. This study was contributed to the control of possible microbial risk including the ARGs in the water of long-running DWDSs.
-
-
[1] HOZALSKI R M, LAPARA T M, ZHAO X, et al. Flushing of stagnant premise water systems after the COVID-19 shutdown can reduce infection risk by Legionella and Mycobacterium spp[J]. Environmental Science & Technology, 2020, 54(24): 15914-15924. [2] 张明露, 周贺, 关磊等. 饮用水配水系统中微生物研究方法的进展[J]. 环境与健康杂志, 2015, 32(5): 458-462. doi: 10.16241/j.cnki.1001-5914.2015.05.024 [3] TANG W, LI Q, CHEN L, et al. Biofilm community structures and opportunistic pathogen gene markers in drinking water mains and the role of pipe materials[J]. ACS ES& T. Water, 2021, 1(3): 630-640. [4] 祝泽兵, 裴云燕, 单莉莉等. 供水管网生物膜中微生物种间相互作用及其影响因素综述[J/OL]. 环境工程: 1-15[2023-03-17]. http://kns.cnki.net/kcms/detail/11.2097.X.20221123.0807.002.html. [5] SIDHU J P S, GUPTA V V S R, STANGE C, et al. Prevalence of antibiotic resistance and virulence genes in the biofilms from an aquifer recharged with stormwater[J]. Water Research, 2020, 185: 0043-1354. [6] LIANG J, MAO G, YIN X, et al. Identification and quantification of bacterial genomes carrying antibiotic resistance genes and virulence factor genes for aquatic microbiological risk assessment[J]. Water Research, 2020, 168: 115160. doi: 10.1016/j.watres.2019.115160 [7] CIOFU O, MOSER C, JENSEN P Ø, et al. Tolerance and resistance of microbial biofilms[J]. Nature Reviews Microbiology, 2022, 20: 621-635. doi: 10.1038/s41579-022-00682-4 [8] 钟丹, 周子仪, 马文成等. 供水管网中抗生素抗性基因环境风险浅析[J]. 给水排水, 2020, 56(S2): 59-63. doi: 10.13789/j.cnki.wwe1964.2020.S2.010 [9] LI J, ZHAO L, FENG M, et al. Abiotic transformation and ecotoxicity change of sulfonamide antibiotics in environmental and water treatment processes: A critical review[J]. Water Research, 2021, 202: 117463. doi: 10.1016/j.watres.2021.117463 [10] YIN R, GUO W, REN N, et al. New insight into the substituents affecting the peroxydisulfate nonradical oxidation of sulfonamides in water[J]. Water Research, 2020, 171: 115374. doi: 10.1016/j.watres.2019.115374 [11] ZHANG B, QIN S, GUAN X, et al. Distribution of antibiotic resistance genes in Karst River and its ecological risk[J]. Water Research, 2021, 203: 117507. doi: 10.1016/j.watres.2021.117507 [12] ZHANG Z, WANG Y, CHEN B, et al. Xenobiotic pollution affects transcription of antibiotic resistance and virulence factors in aquatic microcosms[J]. Environmental Pollution, 2022, 306: 119396. doi: 10.1016/j.envpol.2022.119396 [13] LIN Q, LI L, FANG X, et al. Substrate complexity affects the prevalence and interconnections of antibiotic, metal and biocide resistance genes, integron-integrase genes, human pathogens and virulence factors in anaerobic digestion[J]. Journal of Hazardous Materials, 2022, 438: 129441. doi: 10.1016/j.jhazmat.2022.129441 [14] TANG T, CHEN Y, DU Y, et al. Effects of functional modules and bacterial clusters response on transmission performance of antibiotic resistance genes under antibiotic stress during anaerobic digestion of livestock wastewater[J]. Journal of Hazardous Materials, 2023, 441: 129870. doi: 10.1016/j.jhazmat.2022.129870 [15] WANG H, EDWARDS M. A, FALKINHAM J. O 3RD, et al. Probiotic approach to pathogen control in premise plumbing systems? A review[J]. Environmental Science & Technology, 2013, 47(18): 10117-10128. [16] LU Z, SUN W, LI C, et al. Bioremoval of non-steroidal anti-inflammatory drugs by Pseudoxanthomonas sp. DIN-3 isolated from biological activated carbon pro`cess[J]. Water Research, 2019, 161: 459-472. doi: 10.1016/j.watres.2019.05.065 [17] 陈蕾. 污水中抗生素抗性菌及抗性基因的去除技术. 污水中抗生素抗性菌及抗性基因的去除技术[J]. 生态环境学报, 2018, 27(11): 2163-2169. [18] LI B, QIU Y, ZHANG J, et al. Real-time study of rapid spread of antibiotic resistance plasmid in biofilm using microfluidics[J]. Environmental Science & Technology, 2018, 52(19): 11132-11141. [19] FARHAT N, KIM L, MINETA K, et al. Seawater desalination based drinking water: Microbial characterization during distribution with and without residual chlorine[J]. Water Research, 2022, 210: 117975. doi: 10.1016/j.watres.2021.117975 [20] 付树森, 王艺, 王肖霖, 等. 氯和紫外消毒过程中胞外抗性基因的产生特征[J]. 中国环境科学, 2021, 41(10): 4756-4762. doi: 10.3969/j.issn.1000-6923.2021.10.032 [21] LU Z, JING Z, HUANG J, et al. Can we shape microbial communities to enhance biological activated carbon filter performance?[J]. Water Research, 2022, 212: 118104. doi: 10.1016/j.watres.2022.118104 [22] 李晓明, 王飞, 李建勇等. 饮用水中抗生素污染现状及降解技术研究进展[J]. 食品安全导刊, 2016, 144(21): 94-95. doi: 10.16043/j.cnki.cfs.2016.21.069 [23] 钟文辉, 曹一鸣, 肖露等. 自来水厂次氯酸钠消毒技术应用总结[J]. 清洗世界, 2022, 38(6): 93-96. [24] 漆文光. 自来水厂采用次氯酸钠替代液氯消毒效果研究[J]. 供水技术, 2019, 13(3): 43-47. [25] GOMEZ-SMITH C K, LAPARA T M, HOZALSKI R M. Sulfate reducing bacteria and Mycobacteria dominate the biofilm communities in a chloraminated drinking water distribution system[J]. Environmental Science & Technology, 2015, 49(14): 8432-8440. [26] POTGIETER S, DAI Z, HAVENGA M, et al. Reproducible microbial community dynamics of two drinking water systems treating similar source waters[J]. ACS. ES& T. Water, 2021, 1(7): 1617-1627. [27] THOM C, SMITH C J, MOORE G, et al. Microbiomes in drinking water treatment and distribution: A meta-analysis from source to tap[J]. Water Research, 2022, 212: 118106. doi: 10.1016/j.watres.2022.118106 [28] BORSETTO C, RAGUIDEAU S, TRAVIS E, et al. Impact of sulfamethoxazole on a riverine microbiome[J]. Water Research, 2021, 201: 117382. doi: 10.1016/j.watres.2021.117382 [29] CHEN J, YANG Y, LIU Y, et al. Bacterial community shift in response to a deep municipal tail wastewater treatment system[J]. Bioresource Technology, 2019, 281: 195-201. doi: 10.1016/j.biortech.2019.02.099 [30] 韩雪, 孙坚伟, 张力等. 紫外氯胺组合消毒供水系统中病毒微生物的分布特征[J]. 环境科学, 2021, 42(2): 860-866. doi: 10.13227/j.hjkx.202007039 [31] WANG Y H, WU Y H, LUO L W, et al. Metagenomics analysis of the key functional genes related to biofouling aggravation of reverse osmosis membranes after chlorine disinfection[J]. Journal of Hazardous Material, 2021, 410: 124602. doi: 10.1016/j.jhazmat.2020.124602 [32] EOH H, LIU R, LIM J, et al. Microbial characterization during distribution with and without residual chlorine[J]. Frontiers in Cellular and Infection Microbiology, 2022, 12: 958240. doi: 10.3389/fcimb.2022.958240 [33] WANG M, LIAN Y, WANG Y, et al. The role and mechanism of quorum sensing on environmental antimicrobial resistance[J]. Environmental Pollution, 2023, 322: 121238. doi: 10.1016/j.envpol.2023.121238 [34] ZOU S, ZHANG Q, ZHANG X, et al. Environmental factors and pollution stresses select bacterial populations in association with protists[J]. Frontiers in Marine Science, 2020, 7: 659. doi: 10.3389/fmars.2020.00659 [35] MORRISSEY K, IVESA L, DELVA S, et al. Impacts of environmental stress on resistance and resilience of algal-associated bacterial communities[J]. Ecology and Evolution, 2021, 11: 15004-15019. doi: 10.1002/ece3.8184 [36] SMITS S H J, SCHMITT L, BEIS K. Self-immunity to antibacterial peptides by ABC transporters[J]. FEBS Letters, 2020, 594: 3920-3942. doi: 10.1002/1873-3468.13953 [37] AHMED M S, LAUERSEN K J, IKRAM S, et al. Efflux transporters' engineering and their application in microbial production of heterologous metabolites[J]. ACS Synthetic Biology, 2021, 10,4: 646-669. [38] GOMEZ-ALVAREZ, SIPONEN S, KAUPPINEN A, et al. A comparative analysis employing a gene- and genome-centric metagenomic approach reveals changes in composition, function, and activity in waterworks with different treatment processes and source water in Finland[J]. Water Research, 2023, 229: 119495. doi: 10.1016/j.watres.2022.119495