-
大气边界层(atmospheric boundary layer)为最贴近地面的一层大气,是指直接受地面影响的对流层部分,响应地面作用的时间尺度为一个小时或更短,厚度约为对流层高度的1/10[1-3]。它主要通过摩擦阻力、蒸发和蒸腾、热量输送、污染物排放以及影响气流变化的地形等与地面的作用形成[4-6]。大气边界层内的空气运动由于受到地球自转、温度层结、水汽输送和复杂下垫面等因素的影响而非常复杂[7-8],具有各种气象要素日变化较大、垂直梯度较大等特点,大气边界层高度也随时间和空间不断变化。人类活动带来的污染物排放、传输和转化大部分发生在该层。因此,大气边界层的观测和研究成为大气科学领域的重要内容[9-11]。
常用的提取大气边界层高度手段为:利用常规无线电探空探测的温度、湿度和风廓线计算得到。但是,常规探空探测很难得到高时空分辨率的大气边界层高度信息[10]。近年来,随着遥感技术的迅速发展,激光雷达、微波辐射计和风廓线雷达等高时空分辨率的遥感设备成为估算大气边界层高度的新手段[12-13]。与传统的气象观测手段相比,激光雷达探测大气边界层高度具有时空分辨率高、连续稳定的优势[6]。目前基于激光雷达提取边界层高度的方法包括:目测法、梯度法、标准差法、小波协方差法和线性拟合法。王琳等[4]基于脉冲激光雷达(MPL)数据通过设置不同的尺度间隔研究小波协方差法反演边界层高度的稳定性和准确性,结果表明在尺度间隔﹥300 m时,反演边界层高度趋于稳定。张婉春等[14]基于MPL使用梯度法探测了灰霾天气大气边界层变化特征,发现灰霾天气边界层高度较低。上述对边界层高度的反演都是基于MPL,因激光雷达造价高并未广泛使用。激光云高仪作为一种简易的激光雷达,一般来说探测能力弱于MPL,但与MPL相比造价便宜且体积较小,目前已经广泛应用于全国气象观测网,有较高的时空密度,且污染天气激光云高仪能获得足够的信噪比用于边界层高度的反演[15-17]。
本研究基于Vaisala CL51 云高仪使用梯度法和小波协方差法对2016年10月北京市大兴CL51云高仪后向散射数据进行计算,验证CL51激光云高仪反演边界层高度的可行性,比较梯度法、小波协方差法反演边界层高度的差异,分析不同天气条件边界层高度的日变化,并与探空探测的边界层高度进行对比。
基于激光云高仪探测污染天气边界层高度
Observation of atmospheric boundary layer height of pollution weather with lidar ceilometer
-
摘要: 利用2016年10月北京市大兴CL51云高仪后向散射数据,分别采用梯度法和小波协方差法计算了边界层高度。分析了晴空和霾污染天气边界层高度的差异及影响因素。结果表明,两种方法计算的边界层高度一致性较好。晴空和霾污染天气边界层高度具有不同特征,在霾污染天气,由于大气中污染物削弱了到达地表的太阳辐射,地表没有足够的热量使边界层发生明显抬升,边界层高度维持在较低的高度。晴空天气,由于太阳辐射对地面的增温,边界层高度在正午前后有明显的抬升,边界层高度较高且日变化较明显。边界层高度与地面PM2.5、PM10、CO和黑碳气溶胶等污染物浓度呈负相关关系。Abstract: The atmospheric boundary layer height (ABLH) was calculated by the lidar ceilometer based on the data of Vaisala CL51 ceilometer observed in October 2016 by the Beijing Daxing station. Both the gradient method and the wavelet covariance method were adopted. The atmospheric boundary layer height difference and its influence factors in sunny and haze conditions were analyzed. The results showed that there was no significant difference in ABLH by the two methods. The boundary layer height had different characteristics under different weather conditions. In the case of haze pollution, due to the absorption and scattering of the solar radiation by pollutants in the atmosphere, there was less solar radiation reached the earth surface, the ABLH was lower because of the less heat. While in sunny days, because of the warming of the earth by the solar radiation, the ABLH was higher than that of haze days, and the daily variation of ABLH was more obvious. The ABLH was negatively correlated with the concentrations of PM2.5, PM10, CO, black carbon aerosol and other pollutants on the ground.
-
[1] 张强. 大气边界层气象学研究综述[J]. 干旱气象, 2003, 21(3): 74 − 78. [2] LIU S Y, LIANG X ZH. Observed diurnal cycle climatology of planetary boundary layer height[J].Journal of Climate, 2010, 23: 5790-5809. [3] 魏浩, 胡明宝, 艾未华. 小波变换在风廓线雷达探测大气边界层高度中的应用研究[J]. 热带气象学报, 2015, 31(6): 811 − 820. [4] 王琳, 谢晨波, 韩永, 等. 测量大气边界层高度的激光雷达数据反演方法研究[J]. 大气与环境光学学报, 2012, 7(4): 241 − 247. doi: 10.3969/j.issn.1673-6141.2012.04.001 [5] 王珍珠, 李炬, 钟志庆, 等. 激光雷达探测北京城区夏季大气边界层[J]. 应用光学, 2008, 29(1): 96 − 100. doi: 10.3969/j.issn.1002-2082.2008.01.023 [6] 沈建, 沈利洪, 韩笑, 等. 激光雷达与微波辐射计联合观测大气边界层高度变化[J]. 气象科技, 2017, 45(3): 425 − 429. [7] 李红, 马媛媛, 杨毅. 基于激光雷达资料的小波变换法反演边界层高度的方法[J]. 干旱气象, 2015, 33(1): 78 − 88. [8] LEWEIS J R. WELTON E J, MOLOD A M. Welton, REA M . Molod. Improved boundary layer depth retrievals from MPLNET[J]. Journal of Geophys. Reseach, 118,6: 1-10 [9] 刘辉志, 冯健武, 王雷, 等. 大气边界层物理研究进展[J]. 大气科学, 2013, 37(2): 467 − 467. doi: 10.3878/j.issn.1006-9895.2012.12315 [10] 刘思波, 何文英, 刘红燕, 等. 地基微波辐射计探测大气边界层高度方法[J]. 应用气象学报, 2015, 26(5): 626 − 635. doi: 10.11898/1001-7313.20150512 [11] 滕继峣, 秦凯, 汪云甲, 等. 基于激光雷达观测的大气边界层自动识别局部最优点算法[J]. 光谱学与光谱分析, 2017, 37: 361 − 367. [12] 杨富燕, 张宁, 朱莲芳, 等. 基于激光雷达和微波辐射计观测确定混合层高度方法的比较[J]. 高原气象, 2016, 35(4): 1102 − 1111. [13] 狄慧鸽, 候晓龙, 赵虎, 等. 多波长激光雷达探测多种天气气溶胶光学特性与分析[J]. 物理学报, 2014, 63(24): 244206. doi: 10.7498/aps.63.244206 [14] 张婉春, 张莹, 吕阳, 等. 利用激光雷达探测灰霾天气大气边界层高度[J]. 遥感学报, 2013, 17(4): 981 − 992. [15] 卜令兵, 袁静, 高爱臻, 等. 基于激光云高仪的雾霾过程探测[J]. 光子学报, 2014, 43(9): 09010021 − 09010026. [16] 陈臻懿, 刘文清, 张玉钧, 等. 用激光云高仪测量边界层高度[J]. 激光技术, 2009, 33(5): 455 − 458. doi: 10.3969/j.issn.1001-3806.2009.05.003 [17] ZHU X W, TANG G Q, GUO J P. Mixing layer height on the North China Plain and meteorologicalevidence of serious air pollution in southern Hebei[J]. Atmospheric Research, 2018, 209: 204 − 211. doi: 10.1016/j.atmosres.2018.03.019