-
电氧化技术通过生成的强氧化物质将有机物氧化为二氧化碳和水,无二次污染,反应条件温和,常温常压下就能进行,因此电氧化技术被称为环境友好技术。目前,电氧化技术已在污水净化、垃圾渗滤液、制革废水、印染废水、医药废水和焦化废水等治理领域具有广泛的应用研究。垃圾渗滤液中含有较高浓度的氯离子,经过电氧化处理后,产水余氯浓度较高,使产水带有刺激性气味,不适合直接排放,需要对余氯进行去除。目前,水中余氯去除的主要方法有四价含硫化合物法、活性炭法、KDF(Kinetic Degradation Fluxion)介质过滤法、紫外光照法、过氧化氢法和铁及其化合物法等[1]。活性炭法具有去除效率高、不产生二次污染、能同时去除有机污染物等特点,因此常用于大规模去除余氯的工艺中。活性炭可以依靠吸附作用去除水中的余氯[2],还可以依靠活性炭表面化学性质的作用,基于活性炭表面的氧化还原反应[3-5]。活性炭与水中余氯接触初期,去除余氯以吸附作用为主,达到吸附平衡后,余氯浓度继续下降则是由于化学反应的作用[6]。
影响活性炭吸附性能的因素主要有活性炭的性质、被吸附污染物的性质和其他因素(反应时间、温度、溶液pH、无机离子成分等),其中活性炭的性质(粒径、种类、表面官能团等)是影响活性炭吸附性能最重要的因素[7-9]。粉末活性炭接触面积大,吸附速率快、效果好。本文通过小试试验,探究反应时间、溶液pH、活性炭材质、活性炭投加量、余氯初始浓度等对活性炭去除余氯的影响。在小试的基础上,采用“粉末活性炭+真空转盘过滤”去除电氧化处理填埋场渗滤液后的产水余氯,考察该工艺对余氯的去除效果,分析该工艺用于去除水中余氯的可行性。
粉末活性炭去除电氧化产水余氯的试验研究
Experimental study on removal of residual chlorine from water produced by electrooxidation with powder activated carbon
-
摘要: 针对电氧化工艺处理废水后存在产水余氯的问题,该研究以电氧化处理垃圾渗滤液后的产水为研究对象,采用粉末活性炭去除水中的余氯,考察了反应时间、溶液初始pH、活性炭性质、活性炭投加量等对活性炭去除余氯的影响,并进行了粉末活性炭去除余氯的工艺试验。结果表明,降低溶液初始pH有利于余氯的去除,不同性质的粉末活性炭对余氯的去除效果存在明显差异,试验中所用的粉末活性炭对余氯的最大去除能力为3 000 mg/g,经过“粉末活性炭+真空转盘过滤”工艺处理后的电氧化产水余氯稳定在1mg/L左右。Abstract: In view of the problem of residual chlorine after wastewater treatment by electrooxidation process,this experiment takes the water production after electrooxidation treatment of landfill leachate as the research object., uses the powder activated carbon to remove the residual chlorine in the water.The effects of reaction time, initial pH of solution, properties of activated carbon and dosage of activated carbon on the removal of residual chlorine by activated carbon were investigated.The results showed that reducing the initial pH of solution was beneficial to the removal of residual chlorine, and there were significant differences in the removal effects of different properties of powdered activated carbon on residual chlorine. The maximum removal capacity of powdered activated carbon for residual chlorine was 3000mg·g-1, and the residual chlorine of electrooxidation water was stabilized at about 1mg·L-1 after the process of "powdered activated carbon + vacuum rotary plate filtration".
-
Key words:
- electrical oxidation /
- leachate /
- residual chlorine /
- powder activated carbon
-
表 1 试验水质指标
Table 1. Test water quality index
实验水样 电导率/ms·cm1 COD/mg·L−1 pH 氯离子/mg·L−1 余氯/mg·L−1 纳滤浓缩液 18.5~20.4 2 200~3 600 7.5~8.5 5 500~6 500 0 电氧化产水 16.5~19.6 20~100 7.3~8.5 4 500~5 000 1 000~2 000 表 2 活性炭性质
Table 2. Properties of activated carbon
活性炭 碘值/mg·g−1 元素分析/% C H N 椰壳活性炭 820 73.46 1.68 0.11 木质活性炭I 800 66.78 2.12 0.10 木质活性炭Ⅱ 820 73.60 2.86 0.25 煤质活性炭I 600 76.71 1.35 0.14 煤质活性炭Ⅱ 1 000 68.91 1.98 0.21 煤质活性炭Ⅲ 820 73.24 2.04 0.15 表 3 不同活性炭的表面官能团性质
Table 3. Surface functional group properties of differrent activated carbons
样品 表面官能团/mmol·g−1 —OH —COOR —COOH 酸性官
能团碱性官
能团椰壳活性炭 1.37 0.22 1.75 3.34 0.72 木质活性炭I 0.12 0.07 0.04 0.23 0.22 木质活性炭Ⅱ 0.16 0.06 0.23 0.46 0.45 煤质活性炭I 0.06 0.02 0.04 0.12 0.09 煤质活性炭Ⅱ 1.12 1.21 2.34 4.68 0.84 -
[1] 刘柳君, 刘晓艳, 熊鹰, 等. 水中余氯去除技术及材料研究进展[J]. 广州化工, 2020, 48(19): 29 − 32. doi: 10.3969/j.issn.1001-9677.2020.19.009 [2] 邹萍, 隋贤栋, 黄肖容. 铜锌改性活性炭的制备及对水中余氯的去除效果[J]. 材料开发与应用, 2009, 24(4): 48 − 50. doi: 10.3969/j.issn.1003-1545.2009.04.012 [3] 王丽萍, 徐斌, 钱灏. 净水用颗粒活性炭对水中余氯去除的动力学原理效能[J]. 净水技术, 2018, 37(1): 47 − 52. doi: 10.15890/j.cnki.jsjs.2018.01.008 [4] BAUER R C, SNOEYINK V L. Reactions of Chloramines with Active Carbon[J]. Journal Water Pollution Control Federation, 1973, 45(11): 2290 − 2301. [5] MARTIN R J, SHACKLETON R C. Comparison of two partially activated carbon fabrics for the removal of chlorine and other impurities from water[J]. Water Research, 1990, 24(2): 474 − 484. [6] 张怀旭, 刘婉冬, 李冰璟, 等. 活性炭去除水中余氯的研究[J]. 环境污染与防治, 2008, 30(5): 63 − 68. doi: 10.3969/j.issn.1001-3865.2008.05.018 [7] 朱建华, 王时雄. 不同活性炭滤芯去除饮用水中余氯性能的研究[J]. 绿色化工, 2017, 3: 62 − 64. [8] SKIBINSKI B, GOTZE C, WORCH E, et al. Pore diffusion limits removal of monochloramine in treatment of swimming pool water using granular activated carbon[J]. Water Research, 2018, 132: 270 − 281. doi: 10.1016/j.watres.2017.12.060 [9] JAGUARIBE E F, MEDEIROS L L, BARRETO M C S, et al. The performance of activated carbons from sugarcane bagasse, babassu, and coconut shells in removing residual chlorine[J]. Brazilian Journal of Chemical Engineering, 2005, 22(1): 41 − 47. doi: 10.1590/S0104-66322005000100005 [10] SUIDAN M T. Reduction of aqueous free chlorine with granular activated carbon-pH and temperature effects[J]. Environmental Science&Technology, 1977, 8(11): 785 − 789. [11] MENG F K, Li G P, ZHANG B B, et al. Chemical kinetics and particle size effects of activated carbon for free chlorine removal from drinking water[J]. Water Practice and Technology, 2018, 14: 19 − 26. [12] PERRARD A, RETAILLEAU L, BEERJOAN R, et al. Liquid phase oxidation kinetics of an ex-cellulose activated carbon cloth by NaOCl[J]. Carbon, 2012, 50(6): 2226 − 2234. doi: 10.1016/j.carbon.2012.01.039 [13] BAUER R C, SNOEYINK V L. Reactions of Chloramines with Active Carbon[J]. Journal Water Pollution Control Federation, 1973, 45(11): 2290 − 2301. [14] MARTIN R J, SHACKLETON R C. Comparison of two partially activated carbon fabrics for the removal of chlorine and other impurities from water[J]. Water Research, 1990, 24(2): 474 − 484.