-
在大坝泄洪时,下泄的高速水流会裹挟大量气泡进入消力池底部,高压下气泡溶解在水中,使水体中总溶解气体(Total dissolved gas,TDG)过饱和。过饱和TDG会在下游河道缓慢释放,其释放过程会干扰水生生物尤其是鱼类正常的生命活动,可能导致鱼类患“气泡病”死亡[1]。20世纪60年代,在美国哥伦比亚河首次观察到该现象,引起了广泛关注。在我国,新安江水库、三峡水库、溪洛渡等水利枢纽工程下游也发现了气泡病致鱼类死亡的问题[2-4]。
针对水体中TDG过饱和问题,国内外学者展开了一系列研究,主要分为TDG过饱和的生成与释放2个方面。水体中TDG过饱和主要在消力池内发生,发生过程伴随复杂的气泡传质,消力池下游水体中TDG浓度与下泄流量、消力池水深、大气压强等因素密切相关[5-7]。一些学者尝试通过建立模型来描述水体中TDG过饱和的发生过程。如处在前沿的多相流模型,是由POLITANO et al[8]于2009年首次引入,再经过YANG et al[9]、WANG et al[10]、HUANG et al[11]的进一步发展,已成为目前通用性最好的近坝水体TDG过饱和的模拟模型。TDG释放过程的研究区域主要是坝址下游河道。升温、曝气、高泥沙均能促进TDG释放[12-15]。研究者也建立了TDG释放过程的预测模型。最典型的是华盛顿大学提出的一阶动力学过程[16],随后逐渐发展为二维模型,如FENG et al[17]、曾晨军等[2]建立的纵向二维模型,以及黄菊萍等[18]建立的横向二维模型。
过去60年间,关于水体中TDG过饱和的研究取得了很大进步,但也存在一些不足。由于对气液传质过程的认识还不充分,不能构建完善的、普适的数学模型,而已建的模型中,释放系数还需依靠经验公式或监测数据率定。我国还存在研究区域单一的问题[19-20],之前的研究多集中在长江流域,其他开发水电的流域少有涉及。本文基于广西大藤峡水库上下游长期监测数据,研究了大藤峡周边河道水体中TDG的变化规律,评估了大藤峡现行水利调度方式的生态风险,为大藤峡水利枢纽下游生态环境保护提供支持。
大藤峡一期工程运行期间水体总溶解气体变化特征
Characteristics of total dissolved gas change in water during the operation of the phase I project of the Datengxia project
-
摘要: 在大坝泄水时,大量空气被夹带溶入水体,导致水体中总溶解气体(TDG)过饱和,其负面生态影响会在下游河道持续存在一定距离,增加鱼类患气泡病的风险。为研究大藤峡水利枢纽一期工程建成运行后下游水体中TDG的变化规律,该研究开展了连续监测。结果显示:大藤峡库区水体中TDG过饱和现象不明显,对下游水生态影响很小,且过坝引起的TDG增量与大藤峡出库流量具有较好的线性关系。日均出库流量在6 000 m3/s以下时,下游水体中TDG浓度在100%附近波动,不存在过饱和问题;日均出库流量达到8 000 m3/s或更高时,在下游水体监测到120%以上的高TDG浓度,但在坝下20 km回落至标准限值110%以下,对下游生态影响不大。郁江支流汇入对干流水体中高浓度TDG逸散有较强的促进作用。Abstract: When the dam discharges water, a large amount of air is entrained and dissolved into the water, resulting in supersaturation of total dissolved gas (TDG), Its adverse effects will exist in the downstream for a long distance, which may increase risk of fish bubble disease. In order to study the change characteristics of TDG during the operation of the Phase I Project of the Datengxia Project, continuous monitoring of TDG was carried out. Data analysis conclusion: TDG supersaturation in the upstream of the Datengxia Project is not obvious, and has little impact on the downstream; there is a good linear relationship between the TDG concentration increment and discharge of the Datengxia Project; when the daily average discharge is below 6 000 m3/s, the concentration of TDG in the downstream fluctuates around 100%, and there is no supersaturation; when the daily average discharge rate is above 8 000 m3/s, the TDG in the downstream is more than 120%, but it falls below the standard limit of 110% at 20km below the dam, which has little impact on the downstream ecology; the confluence of the Yujiang River into the main stream can promote the dissipation of high-concentration TDG in the main stream.
-
Key words:
- dam discharge /
- total dissolved gas /
- supersaturation /
- confluence /
- release coefficient
-
表 1 坝上1 km处TDG监测结果
Table 1. The monitoring data of TDG in the river 1 km upstream of the dam
监测时
间/a监测深
度/mTDG变化
范围/%TDG均值/
%标准差 饱和数据
占比/%2021 1 84.49~111.76 96.81 4.61 14.9 2 85.28~103.70 96.00 3.89 7.6 2022 0.5 90.10~102.10 96.19 2.87 10.5 2 89.20~96.60 92.66 2.70 0.0 表 2 坝下1.87km交通桥TDG监测数据
Table 2. The monitoring data of TDG at the bridge 1.87 km downstream of the dam
监测日期 右岸TDG/% 江中TDG/% 左岸TDG/% TDG最大
差值/%2022-06-30 122.8 115.8 103.7 19.1 2022-07-07 118.5 − 96.3 22.2 2022-07-08 119.1 112.2 96.3 22.8 注:“-”处数据缺失。 -
[1] BEININGEN K, EBEL W. Effect of John Day Dam on dissolved nitrogen concentrations and salmon in the Columbia River, 1968[J]. Transactions of the american fisheries society, 1970, 99(4): 664 − 671. doi: 10.1577/1548-8659(1970)99<664:EOJDDO>2.0.CO;2 [2] 曾晨军, 莫康乐, 关铁生, 等. 水库泄水总溶解气体过饱和对鱼类的危害[J]. 水利水运工程学报, 2020, 184(6): 32 − 41. doi: 10.12170/20200731002 [3] 谭德彩. 三峡工程致气体过饱和对鱼类致死效应的研究[D]. 重庆: 西南大学, 2006. [4] 吴成根. 虹鳟气泡病[J]. 中国水产, 1994(10): 27. [5] 陈永灿, 付健, 刘昭伟, 等. 三峡大坝下游溶解氧变化特性及影响因素分析[J]. 水科学进展, 2009, 20(4): 526 − 530. doi: 10.3321/j.issn:1001-6791.2009.04.012 [6] 蒋亮, 李嘉, 李然, 等. 紫坪铺坝下游过饱和溶解气体原型观测研究[J]. 水科学进展, 2008, 84(3): 367 − 371. doi: 10.3321/j.issn:1001-6791.2008.03.010 [7] 王煜, 戴会超. 高坝泄流溶解氧过饱和影响因子主成分分析[J]. 水电能源科学, 2010, 28(11): 94 − 96. doi: 10.3969/j.issn.1000-7709.2010.11.031 [8] POLITANO M, CARRICA P, WEBER L. A multiphase model for the hydrodynamics and total dissolved gas in tailraces[J]. International Journal of Multiphase Flow, 2009, 35(11): 1036 − 1050. doi: 10.1016/j.ijmultiphaseflow.2009.06.009 [9] YANG H X, LI R, LIANG R F, et al. A parameter analysis of a two-phase flow model for supersaturated total dissolved gas downstream spillways[J]. Journal of Hydrodynamics, 2016, 28(4): 648 − 657. doi: 10.1016/S1001-6058(16)60669-8 [10] WANG Y, POLITANO M, WEBER L. Spillway jet regime and total dissolved gas prediction with a multiphase flow model[J]. Journal of Hydraulic Research, 2018, 57(1): 26 − 38. [11] HUANG J, LI R, FENG J J, et al. The application of baffle block in mitigating TDGS of dams with different discharge patterns[J]. Ecological Indicators, 2021, 133: 108418. doi: 10.1016/j.ecolind.2021.108418 [12] 冯镜洁, 李然, 唐春燕, 等. 含沙量对过饱和总溶解气体释放过程影响分析[J]. 水科学进展, 2012, 23(5): 702 − 708. doi: 10.14042/j.cnki.32.1309.2012.05.011 [13] YUAN Y, HUANG J, WANG Z, et al. Experimental investigations on the dissipation process of supersaturated total dissolved gas: Focus on the adsorption effect of solid walls[J]. Water research, 2020, 183: 116087. doi: 10.1016/j.watres.2020.116087 [14] OU Y M, FENG J J, LI R, et al. Impact of temperature on the dissipation process of supersaturated total dissolved gas in flowing water[J]. Fresenius environmental bulletin, 2016, 25(6): 1927 − 1934. [15] WITT A, STEWART K, HADJERIOUA B. Predicting Total Dissolved Gas travel time in hydropower reservoirs[J]. Journal of environmental engineering, 2017, 143(12): 06017011. doi: 10.1061/(ASCE)EE.1943-7870.0001281 [16] Columbia basin research school of aquatic and fishery sciences, University of washington. Columbia River salmon passage model CRiSP. 1.6, theory and calibration[R]. Washington DC: University of Washington, 2000. [17] FENG J J, LI R, YANG H X, et al. A laterally averaged two-dimensional simulation of unsteady supersaturated total dissolved gas in deep reservoir[J]. Journal of hydrodynamics, 2013, 25(3): 396 − 403. doi: 10.1016/S1001-6058(11)60378-9 [18] 黄菊萍, 黄膺翰, 欧洋铭, 等. 基于Eulerian-Lagrangian模型的库区溶解气体时空分布和对鱼类影响的模拟[J]. 清华大学学报(自然科学版), 2021, 61(6): 601 − 609. doi: 10.16511/j.cnki.qhdxxb.2020.26.032 [19] 李晓亮, 葛察忠, 贾真, 等. 新常态下我国环境政策的需求和建议[J]. 环境保护科学, 2015, 41(2): 12 − 16. doi: 10.3969/j.issn.1004-6216.2015.02.003 [20] 罗理恒, 张希栋, 曹超. 中国环境政策40年历史演进及启示[J]. 环境保护科学, 2022, 48(4): 34 − 38. [21] 羊绍全, 陈严武, 韦福安, 等. 广西旅游生态环境承载力时空分异研究[J]. 环境保护科学, 2018, 44(4): 14 − 20. doi: 10.16803/j.cnki.issn.1004-6216.2018.04.003 [22] ENGINEERS U. Technical analysis of TDG processes[R]. Washington DC: US Army Corps of Engineers, Northwest Division, Environmental Resources and Fish Planning Offices, 2005. [23] U. S. Environmental Protection Agency. Quality criteria for water[S]. Washington DC , 1986.