脉冲暴露下无机砷对大型溞急性毒性效应
Acute Toxicity Effect of Inorganic Arsenic on Daphnia magna under Pulsed Exposure
-
摘要: 相比传统的持续暴露模式,脉冲暴露方式是污染物进入自然环境后较常见的暴露形式。为了更好地模拟水体中污染物浓度变化下生物暴露的情况,采用脉冲暴露的方法,以大型溞(Daphnia magna)作为受试生物,研究2种无机砷(三价砷和五价砷)对大型溞的急性毒性效应。结果表明,无论哪一种暴露方式,三价砷(arsenite,As(Ⅲ))对大型溞的毒性效应远高于五价砷(arsenate,As(Ⅴ));而对于不同脉冲暴露模式(4、8和12 h间隔脉冲暴露)而言,脉冲暴露时间间隔越长,大型溞对无机砷的耐受性越强。12 h间隔脉冲暴露形式下,As(Ⅲ)和As(Ⅴ)对大型溞的48 h半数致死浓度(48 h-LC50)分别为2.73 mg·L-1和5.53 mg·L-1,明显高于4 h和8 h脉冲暴露形式以及持续暴露形式下48 h-LC50值。对大型溞中砷富集浓度分析可知,不同脉冲暴露方式的毒性差异并不能完全归结为砷的生物富集量不同,而可能与暴露时间间隔为大型溞提供生理恢复的时间相关。一定时间的生理调节能在一定程度上降低无机砷对大型溞的毒性效应。研究结果为更加合理地评价无机砷对水生生物的毒性效应提供了科学数据,同时也为更精确的砷风险评估提供了方法学的参考。Abstract: Compared to the traditional constant exposure mode, pulse exposure is a more usual form for exposure of pollutants entered into natural environment. In order to get a better simulation of the biological exposure with the pollutant concentration changing in waterbody, different modes of pulse exposure including four groups of time intervals (0, 4, 8 and 12 h) were used in the present study, and Daphnia magna was used as the test organism for exploring the acute toxic effects of arsenite (As(Ⅲ)) and arsenate (As(Ⅴ)). The results showed that no matter which exposure method, As(Ⅲ) exhibited a greater toxic effect on Daphnia magna than As(Ⅴ). For different pulse exposure modes, we also found that the longer the interval time between pulse exposures, the greater the tolerance of Daphnia magna to inorganic arsenic. Based on the survival of Daphnia magna as the indicator of biological effect under different exposure patterns, it could figure out that the tolerance of Daphnia magna to inorganic arsenic was enhanced with the increase of interval time in pulse exposure. In 12 h interval pulse exposure, for instance, the 48 h half lethal concentration (48 h-LC50) of As(Ⅲ) and As(Ⅴ) on Daphnia magna were 2.73 mg·L-1 and 5.53 mg·L-1, respectively. These values were significantly higher than the 48 h-LC50 values under the other short pulse exposure forms of 4 h and 8 h, and the constant exposure. The results of arsenic bioaccumulation in Daphnia magna body suggested that the difference of biological effect under pulse exposure was not only caused by the arsenic bioaccumulation in Daphnia magna, but also the time intervals could supply a physiological recovery time. In hence, the physiological regulation for a certain period time could provide the Daphnia magna enough time to produce toxicity resistance, then reduce the toxicity of inorganic arsenic to Daphnia magna. These results provide relevant scientific data for a more reasonable evaluation of the toxic effects of inorganic arsenic on aquatic organisms, and also provide theoretical references for more accurate arsenic risk assessment in the future.
-
Key words:
- inorganic arsenic /
- Daphnia magna /
- acute toxicity /
- pulsed exposure
-
-
Mondal P, Majumder C B, Mohanty B. Laboratory based approaches for arsenic remediation from contaminated water:Recent developments[J]. Journal of Hazardous Materials, 2006, 137(1):464-479 Duker A A, Carranza E J, Hale M. Arsenic geochemistry and health[J]. Environment International, 2005, 31(5):631-641 Liu C P, Luo C L, Gao Y, et al. Arsenic contamination and potential health risk implications at an abandoned tungsten mine, southern China[J]. Environmental Pollution, 2009, 158(3):820-826 Goessler W, Maher W, Irgolic K J, et al. Arsenic compounds in a marine food chain[J]. Fresenius Journal of Analytical Chemistry, 1997, 359(4-5):434-437 Bhattacharya P, Welch A H, Stollenwerk K G, et al. Arsenic in the environment:Biology and Chemistry[J]. Science of the Total Environment, 2007, 379(2):109-120 Anawar H M, Akai J, Komaki K, et al. Geochemical occurrence of arsenic in groundwater of Bangladesh:Sources and mobilization processes[J]. Journal of Geochemical Exploration, 2003, 77(2):109-131 Matschullat J. Arsenic in the geosphere-A review[J]. Science of the Total Environment, 2000, 249(1):297-312 Smedley P L, Kinniburgh D G. A review of the source, behaviour and distribution of arsenic in natural waters[J]. Applied Geochemistry, 2002, 17(5):517-568 Berge W F T. Breeding Daphnia magna[J]. Hydrobiologia, 1978, 59(2):121-123 郭婧颖, 刘建超, 李帅衡, 等. 双酚AF对大型溞生殖、生长等生态行为的影响[J]. 中国环境科学, 2019, 39(10):4394-4400 Guo J Y, Liu J C, Li S H, et al. Influences of bisphenol AF on the reproduction and growth of Daphnia magna[J]. China Environmental Science, 2019, 39(10):4394-4400(in Chinese)
陈丽萍, 吴长兴, 苍涛, 等. 3种重金属离子对大型溞的急性毒性效应[J]. 浙江农业科学, 2018, 59(1):46-48 , 50
刘倩, 杜青平, 刘涛, 等. 纳米氧化锌致大型溞的毒性效应特征[J]. 环境科学学报, 2019, 39(4):1332-1339 Liu Q, Du Q P, Liu T, et al. Study on the toxicity effects of nanometer zinc oxide on Daphnia magna[J]. Acta Scientiae Circumstantiae, 2019, 39(4):1332-1339(in Chinese)
Dokyung K, Yooeun C, Youn-Joo A. Mixture toxicity of nickel and microplastics with different functional groups on Daphnia magna[J]. Environmental Science & Technology, 2017, 51(21):12852-12858 Organization for Economic Co-operation and Development (OECD). Guidelines for the Testing of Chemicals and Pesticides[R]. Paris:OECD, 2012 Hoang T C, Gallagher J S, Klaine S J. Responses of Daphnia magna to pulsed exposures of arsenic[J]. Environmental Toxicology, 2007, 22(3):308-317 盛连喜, 李爽, 徐静波. 镉脉冲暴露中金属硫蛋白的诱导-恢复和代际效应[J]. 北华大学学报:自然科学版, 2015, 16(3):389-397 Sheng L X, Li S, Xu J B. Induction of metallothioneins during pulsed cadmium exposure:Recovery and trans-generation effect[J]. Journal of Beihua University:Natural Science, 2015, 16(3):389-397(in Chinese)
Widianarko B, Kuntoro F X, Van Gestel C A, et al. Toxicokinetics and toxicity of zinc under time-varying exposure in the guppy (Poecilia reticulata)[J]. Environmental Toxicology & Chemistry, 2010, 20(4):763-768 Naddy R B, Klaine S J. Effect of pulse frequency and interval on the toxicity of chlorpyrifos to Daphnia magna[J]. Chemosphere, 2001, 45(4):497-506 Hoang T C, Klaine S J. Influence of organism age on metal toxicity to Daphnia magna[J]. Environmental Toxicology & Chemistry, 2010, 26(6):1198-1204 Van der Hoeven N, Gerritsen A A M. Effects of chlorpyrifos on individuals and populations of Daphnia pulex in the laboratory and field[J]. Environmental Toxicology & Chemistry, 1997, 16:2438-2447 Zhao Y, Newman M C. Effects of exposure duration and recovery time during pulsed exposures[J]. Environmental Toxicology & Chemistry, 2010, 25(5):1298-1304 Hoang T C, Gallagher J S, Tomasso J R, et al. Toxicity of two pulsed metal exposures to Daphnia magna:Relative effects of pulsed duration-concentration and influence of interpulse period[J]. Archives of Environmental Contamination & Toxicology, 2007, 53(4):579-589 Guillard R R L, Lorenzen C J. Yellow-green algae with chlorophyllide[J]. Journal of Phycology, 2010, 8(1):10-14 Samel A, Ziegenfuss M, Goulden C E, et al. Culturing and bioassay testing of Daphnia magna using Elendt M4, Elendt M7, and COMBO media[J]. Ecotoxicology and Environmental Safety, 1999, 43(1):103-110 Wang N X, Liu Y Y, Wei Z B, et al. Waterborne and dietborne toxicity of inorganic arsenic to the freshwater zooplankton Daphnia magna[J]. Environmental Science & Technology, 2018, 52(15):8912-8919 李妍丽, 柯林. As(Ⅲ)和As(Ⅴ)对小球藻(Chlorella sp.)的生长影响研究[J]. 环境科学与技术, 2012, 35(12):61-64 , 70 Li Y L, Ke L. Toxicity of arsenic species on growth of green microalgae Chlorella sp.[J]. Environmental Science & Technology, 2012, 35(12):61-64, 70(in Chinese)
Chowdhury U K, Rahman M M, Mandal B K, et al. Groundwater arsenic contamination and human suffering in West Bengal, India and Bangladesh[J]. Environmental Science, 2001, 8(5):393-415 Das D, Chatterjee A, Mandal B K, et al. Arsenic in ground water in six districts of West Bengal, India:The biggest arsenic calamity in the world. Part 2. Arsenic concentration in drinking water, hair, nails, urine, skin-scale and liver tissue (biopsy) of the affected people[J]. The Analyst, 1995, 120(3):917-924 Borstpauwels G W, Peter J K, Jager S, et al. A study of the arsenate uptake by yeast cells compared with phosphate uptake[J]. Biochimica et Biophysica Acta, 1965, 94(1):312-314 Squibb K S, Fowler B A. Toxicity of Arsenic and Its Compounds[M]//Fowler B A. Biological & Environmental Effects of Arsenic. Elsevier Science, 1983:233-269 Suhendrayatna, Ohki A, Nakajima T, et al. Studies on the accumulation and transformation of arsenic in freshwater organisms Ⅱ. Accumulation and transformation of arsenic compounds by Tilapia mossambica[J]. Chemosphere, 2002, 46(2):325-331 黄飞, 周昉, 姜舒扬, 等. 绿藻胞外聚合物对无机砷生物累积特征的影响[J]. 环境化学, 2019, 38(5):1021-1027 Huang F, Zhou F, Jiang S Y, et al. Effects of extracellular polymeric substances on the bioaccumulation of inorganic arsenic by green microalgae[J]. Environmental Chemistry, 2019, 38(5):1021-1027(in Chinese)
Tsui M T, Wang W X. Acute toxicity of mercury to Daphnia magna under different conditions[J]. Environmental Science & Technology, 2006, 40(12):4025-4030 Hoang T C, Klaine S J. Characterizing the toxicity of pulsed selenium exposure to Daphnia magna[J]. Chemosphere, 2008, 71:429-438 -

计量
- 文章访问数: 2761
- HTML全文浏览数: 2761
- PDF下载数: 109
- 施引文献: 0