脉冲暴露下无机砷对大型溞急性毒性效应

谢希琳, 汪宁欣, 周美霞. 脉冲暴露下无机砷对大型溞急性毒性效应[J]. 生态毒理学报, 2020, 15(6): 308-317. doi: 10.7524/AJE.1673-5897.20191225001
引用本文: 谢希琳, 汪宁欣, 周美霞. 脉冲暴露下无机砷对大型溞急性毒性效应[J]. 生态毒理学报, 2020, 15(6): 308-317. doi: 10.7524/AJE.1673-5897.20191225001
Xie Xilin, Wang Ningxin, Zhou Meixia. Acute Toxicity Effect of Inorganic Arsenic on Daphnia magna under Pulsed Exposure[J]. Asian journal of ecotoxicology, 2020, 15(6): 308-317. doi: 10.7524/AJE.1673-5897.20191225001
Citation: Xie Xilin, Wang Ningxin, Zhou Meixia. Acute Toxicity Effect of Inorganic Arsenic on Daphnia magna under Pulsed Exposure[J]. Asian journal of ecotoxicology, 2020, 15(6): 308-317. doi: 10.7524/AJE.1673-5897.20191225001

脉冲暴露下无机砷对大型溞急性毒性效应

    作者简介: 谢希琳(1995-),女,硕士研究生,研究方向为水中污染物环境行为及生态效应,E-mail:1946794617@qq.com
    通讯作者: 汪宁欣, E-mail: xiyanglingsu@163.com
  • 基金项目:

    国家自然科学基金资助项目(21507001);安徽省教育厅重点项目(KJ2019A0089)

  • 中图分类号: X171.5

Acute Toxicity Effect of Inorganic Arsenic on Daphnia magna under Pulsed Exposure

    Corresponding author: Wang Ningxin, xiyanglingsu@163.com
  • Fund Project:
  • 摘要: 相比传统的持续暴露模式,脉冲暴露方式是污染物进入自然环境后较常见的暴露形式。为了更好地模拟水体中污染物浓度变化下生物暴露的情况,采用脉冲暴露的方法,以大型溞(Daphnia magna)作为受试生物,研究2种无机砷(三价砷和五价砷)对大型溞的急性毒性效应。结果表明,无论哪一种暴露方式,三价砷(arsenite,As(Ⅲ))对大型溞的毒性效应远高于五价砷(arsenate,As(Ⅴ));而对于不同脉冲暴露模式(4、8和12 h间隔脉冲暴露)而言,脉冲暴露时间间隔越长,大型溞对无机砷的耐受性越强。12 h间隔脉冲暴露形式下,As(Ⅲ)和As(Ⅴ)对大型溞的48 h半数致死浓度(48 h-LC50)分别为2.73 mg·L-1和5.53 mg·L-1,明显高于4 h和8 h脉冲暴露形式以及持续暴露形式下48 h-LC50值。对大型溞中砷富集浓度分析可知,不同脉冲暴露方式的毒性差异并不能完全归结为砷的生物富集量不同,而可能与暴露时间间隔为大型溞提供生理恢复的时间相关。一定时间的生理调节能在一定程度上降低无机砷对大型溞的毒性效应。研究结果为更加合理地评价无机砷对水生生物的毒性效应提供了科学数据,同时也为更精确的砷风险评估提供了方法学的参考。
  • 加载中
  • Mondal P, Majumder C B, Mohanty B. Laboratory based approaches for arsenic remediation from contaminated water:Recent developments[J]. Journal of Hazardous Materials, 2006, 137(1):464-479
    Duker A A, Carranza E J, Hale M. Arsenic geochemistry and health[J]. Environment International, 2005, 31(5):631-641
    Liu C P, Luo C L, Gao Y, et al. Arsenic contamination and potential health risk implications at an abandoned tungsten mine, southern China[J]. Environmental Pollution, 2009, 158(3):820-826
    Goessler W, Maher W, Irgolic K J, et al. Arsenic compounds in a marine food chain[J]. Fresenius Journal of Analytical Chemistry, 1997, 359(4-5):434-437
    Bhattacharya P, Welch A H, Stollenwerk K G, et al. Arsenic in the environment:Biology and Chemistry[J]. Science of the Total Environment, 2007, 379(2):109-120
    Anawar H M, Akai J, Komaki K, et al. Geochemical occurrence of arsenic in groundwater of Bangladesh:Sources and mobilization processes[J]. Journal of Geochemical Exploration, 2003, 77(2):109-131
    Matschullat J. Arsenic in the geosphere-A review[J]. Science of the Total Environment, 2000, 249(1):297-312
    Smedley P L, Kinniburgh D G. A review of the source, behaviour and distribution of arsenic in natural waters[J]. Applied Geochemistry, 2002, 17(5):517-568
    Berge W F T. Breeding Daphnia magna[J]. Hydrobiologia, 1978, 59(2):121-123
    郭婧颖, 刘建超, 李帅衡, 等. 双酚AF对大型溞生殖、生长等生态行为的影响[J]. 中国环境科学, 2019, 39(10):4394-4400

    Guo J Y, Liu J C, Li S H, et al. Influences of bisphenol AF on the reproduction and growth of Daphnia magna[J]. China Environmental Science, 2019, 39(10):4394-4400(in Chinese)

    陈丽萍, 吴长兴, 苍涛, 等. 3种重金属离子对大型溞的急性毒性效应[J]. 浙江农业科学, 2018, 59(1):46-48

    , 50

    刘倩, 杜青平, 刘涛, 等. 纳米氧化锌致大型溞的毒性效应特征[J]. 环境科学学报, 2019, 39(4):1332-1339

    Liu Q, Du Q P, Liu T, et al. Study on the toxicity effects of nanometer zinc oxide on Daphnia magna[J]. Acta Scientiae Circumstantiae, 2019, 39(4):1332-1339(in Chinese)

    Dokyung K, Yooeun C, Youn-Joo A. Mixture toxicity of nickel and microplastics with different functional groups on Daphnia magna[J]. Environmental Science & Technology, 2017, 51(21):12852-12858
    Organization for Economic Co-operation and Development (OECD). Guidelines for the Testing of Chemicals and Pesticides[R]. Paris:OECD, 2012
    Hoang T C, Gallagher J S, Klaine S J. Responses of Daphnia magna to pulsed exposures of arsenic[J]. Environmental Toxicology, 2007, 22(3):308-317
    盛连喜, 李爽, 徐静波. 镉脉冲暴露中金属硫蛋白的诱导-恢复和代际效应[J]. 北华大学学报:自然科学版, 2015, 16(3):389-397

    Sheng L X, Li S, Xu J B. Induction of metallothioneins during pulsed cadmium exposure:Recovery and trans-generation effect[J]. Journal of Beihua University:Natural Science, 2015, 16(3):389-397(in Chinese)

    Widianarko B, Kuntoro F X, Van Gestel C A, et al. Toxicokinetics and toxicity of zinc under time-varying exposure in the guppy (Poecilia reticulata)[J]. Environmental Toxicology & Chemistry, 2010, 20(4):763-768
    Naddy R B, Klaine S J. Effect of pulse frequency and interval on the toxicity of chlorpyrifos to Daphnia magna[J]. Chemosphere, 2001, 45(4):497-506
    Hoang T C, Klaine S J. Influence of organism age on metal toxicity to Daphnia magna[J]. Environmental Toxicology & Chemistry, 2010, 26(6):1198-1204
    Van der Hoeven N, Gerritsen A A M. Effects of chlorpyrifos on individuals and populations of Daphnia pulex in the laboratory and field[J]. Environmental Toxicology & Chemistry, 1997, 16:2438-2447
    Zhao Y, Newman M C. Effects of exposure duration and recovery time during pulsed exposures[J]. Environmental Toxicology & Chemistry, 2010, 25(5):1298-1304
    Hoang T C, Gallagher J S, Tomasso J R, et al. Toxicity of two pulsed metal exposures to Daphnia magna:Relative effects of pulsed duration-concentration and influence of interpulse period[J]. Archives of Environmental Contamination & Toxicology, 2007, 53(4):579-589
    Guillard R R L, Lorenzen C J. Yellow-green algae with chlorophyllide[J]. Journal of Phycology, 2010, 8(1):10-14
    Samel A, Ziegenfuss M, Goulden C E, et al. Culturing and bioassay testing of Daphnia magna using Elendt M4, Elendt M7, and COMBO media[J]. Ecotoxicology and Environmental Safety, 1999, 43(1):103-110
    Wang N X, Liu Y Y, Wei Z B, et al. Waterborne and dietborne toxicity of inorganic arsenic to the freshwater zooplankton Daphnia magna[J]. Environmental Science & Technology, 2018, 52(15):8912-8919
    李妍丽, 柯林. As(Ⅲ)和As(Ⅴ)对小球藻(Chlorella sp.)的生长影响研究[J]. 环境科学与技术, 2012, 35(12):61-64

    , 70 Li Y L, Ke L. Toxicity of arsenic species on growth of green microalgae Chlorella sp.[J]. Environmental Science & Technology, 2012, 35(12):61-64, 70(in Chinese)

    Chowdhury U K, Rahman M M, Mandal B K, et al. Groundwater arsenic contamination and human suffering in West Bengal, India and Bangladesh[J]. Environmental Science, 2001, 8(5):393-415
    Das D, Chatterjee A, Mandal B K, et al. Arsenic in ground water in six districts of West Bengal, India:The biggest arsenic calamity in the world. Part 2. Arsenic concentration in drinking water, hair, nails, urine, skin-scale and liver tissue (biopsy) of the affected people[J]. The Analyst, 1995, 120(3):917-924
    Borstpauwels G W, Peter J K, Jager S, et al. A study of the arsenate uptake by yeast cells compared with phosphate uptake[J]. Biochimica et Biophysica Acta, 1965, 94(1):312-314
    Squibb K S, Fowler B A. Toxicity of Arsenic and Its Compounds[M]//Fowler B A. Biological & Environmental Effects of Arsenic. Elsevier Science, 1983:233-269
    Suhendrayatna, Ohki A, Nakajima T, et al. Studies on the accumulation and transformation of arsenic in freshwater organisms Ⅱ. Accumulation and transformation of arsenic compounds by Tilapia mossambica[J]. Chemosphere, 2002, 46(2):325-331
    黄飞, 周昉, 姜舒扬, 等. 绿藻胞外聚合物对无机砷生物累积特征的影响[J]. 环境化学, 2019, 38(5):1021-1027

    Huang F, Zhou F, Jiang S Y, et al. Effects of extracellular polymeric substances on the bioaccumulation of inorganic arsenic by green microalgae[J]. Environmental Chemistry, 2019, 38(5):1021-1027(in Chinese)

    Tsui M T, Wang W X. Acute toxicity of mercury to Daphnia magna under different conditions[J]. Environmental Science & Technology, 2006, 40(12):4025-4030
    Hoang T C, Klaine S J. Characterizing the toxicity of pulsed selenium exposure to Daphnia magna[J]. Chemosphere, 2008, 71:429-438
  • 加载中
计量
  • 文章访问数:  2761
  • HTML全文浏览数:  2761
  • PDF下载数:  109
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-12-25
谢希琳, 汪宁欣, 周美霞. 脉冲暴露下无机砷对大型溞急性毒性效应[J]. 生态毒理学报, 2020, 15(6): 308-317. doi: 10.7524/AJE.1673-5897.20191225001
引用本文: 谢希琳, 汪宁欣, 周美霞. 脉冲暴露下无机砷对大型溞急性毒性效应[J]. 生态毒理学报, 2020, 15(6): 308-317. doi: 10.7524/AJE.1673-5897.20191225001
Xie Xilin, Wang Ningxin, Zhou Meixia. Acute Toxicity Effect of Inorganic Arsenic on Daphnia magna under Pulsed Exposure[J]. Asian journal of ecotoxicology, 2020, 15(6): 308-317. doi: 10.7524/AJE.1673-5897.20191225001
Citation: Xie Xilin, Wang Ningxin, Zhou Meixia. Acute Toxicity Effect of Inorganic Arsenic on Daphnia magna under Pulsed Exposure[J]. Asian journal of ecotoxicology, 2020, 15(6): 308-317. doi: 10.7524/AJE.1673-5897.20191225001

脉冲暴露下无机砷对大型溞急性毒性效应

    通讯作者: 汪宁欣, E-mail: xiyanglingsu@163.com
    作者简介: 谢希琳(1995-),女,硕士研究生,研究方向为水中污染物环境行为及生态效应,E-mail:1946794617@qq.com
  • 安徽工业大学能源与环境学院, 马鞍山 243032
基金项目:

国家自然科学基金资助项目(21507001);安徽省教育厅重点项目(KJ2019A0089)

摘要: 相比传统的持续暴露模式,脉冲暴露方式是污染物进入自然环境后较常见的暴露形式。为了更好地模拟水体中污染物浓度变化下生物暴露的情况,采用脉冲暴露的方法,以大型溞(Daphnia magna)作为受试生物,研究2种无机砷(三价砷和五价砷)对大型溞的急性毒性效应。结果表明,无论哪一种暴露方式,三价砷(arsenite,As(Ⅲ))对大型溞的毒性效应远高于五价砷(arsenate,As(Ⅴ));而对于不同脉冲暴露模式(4、8和12 h间隔脉冲暴露)而言,脉冲暴露时间间隔越长,大型溞对无机砷的耐受性越强。12 h间隔脉冲暴露形式下,As(Ⅲ)和As(Ⅴ)对大型溞的48 h半数致死浓度(48 h-LC50)分别为2.73 mg·L-1和5.53 mg·L-1,明显高于4 h和8 h脉冲暴露形式以及持续暴露形式下48 h-LC50值。对大型溞中砷富集浓度分析可知,不同脉冲暴露方式的毒性差异并不能完全归结为砷的生物富集量不同,而可能与暴露时间间隔为大型溞提供生理恢复的时间相关。一定时间的生理调节能在一定程度上降低无机砷对大型溞的毒性效应。研究结果为更加合理地评价无机砷对水生生物的毒性效应提供了科学数据,同时也为更精确的砷风险评估提供了方法学的参考。

English Abstract

参考文献 (34)

返回顶部

目录

/

返回文章
返回