土壤镉污染的生物毒性研究进展
Toxicity of Cadmium Pollution in Soil to Organisms: A Review
-
摘要: 土壤镉污染日益严重,镉污染影响土壤生物的数量、多样性、生长代谢和基因表达等方面。笔者从土壤镉污染对动物、植物和微生物的毒性作用、影响镉生物毒性的因素以及关于镉生物毒性的研究方法3个方面总结了目前的研究进展,并对今后的研究方向进行了探讨,以期为完善土壤环境质量评价体系提供科学依据。Abstract: Cadmium pollution in soil in China has drawn a significant attention in the recent years due to its direct negative effects on crops. The number, diversity, growth, metabolism and gene expression of soil organisms are affected by cadmium. The current research progress of toxicity of soil-associated cadmium to organisms was summarized in this review, which include the toxic effects on animals, plants and microorganisms, the influence factors and research methods of the toxic effects of soil-associated cadmium on the organisms. Also, the direction of future research is discussed to provide scientific basis for improving the soil environmental quality assessment system.
-
Key words:
- cadmium /
- soil /
- biotoxicity /
- influence factors /
- research methods
-
-
Kumar V, Sharma A, Kaur P, et al. Pollution assessment of heavy metals in soils of India and ecological risk assessment:A state-of-the-art[J]. Chemosphere, 2019, 216:449-462 生态环境部, 国家市场监督管理总局. GB15618-2018土壤环境质量农用地土壤污染风险管控标准(试行)[S]. 北京:中国环境出版集团, 2018 陈能场, 郑煜基, 何晓峰, 等. 《全国土壤污染状况调查公报》探析[J]. 农业环境科学学报, 2017, 36(9):1689-1692 Chen N C, Zheng Y J, He X F, et al. Analysis of the Report on the national general survey of soil contamination[J]. Journal of Agro-Environment Science, 2017, 36(9):1689-1692(in Chinese)
Zhao H C, Yu L, Yu M J, et al. Nitrogen combined with biochar changed the feedback mechanism between soil nitrification and Cd availability in an acidic soil[J]. Journal of Hazardous Materials, 2020, 390:121631 Kuang J L, Huang L N, He Z L, et al. Predicting taxonomic and functional structure of microbial communities in acid mine drainage[J]. ISME Journal, 2016, 10(6):1527-1539 Kerou M, Offre P, Valledor L, et al. Proteomics and comparative genomics of Nitrososphaera viennensis reveal the core genome and adaptations of archaeal ammonia oxidizers[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(49):7937-7946 Tian H X, Kong L, Megharaj M, et al. Contribution of attendant anions on cadmium toxicity to soil enzymes[J]. Chemosphere, 2017, 187:19-26 Tan X P, Wang Z Q, Lu G N, et al. Kinetics of soil dehydrogenase in response to exogenous Cd toxicity[J]. Journal of Hazardous Materials, 2017, 329:299-309 Wu B, Hou S Y, Peng D H, et al. Response of soil micro-ecology to different levels of cadmium in alkaline soil[J]. Ecotoxicology and Environmental Safety, 2018, 166:116-122 Han J G, Wang S Y, Fan D W, et al. Time-dependent hormetic response of soil alkaline phosphatase induced by Cd and the association with bacterial community composition[J]. Microbial Ecology, 2019, 78(4):961-973 Aamer M, Muhammad U H, Li Z, et al. Foliar application of glycinebetaine (GB) alleviates the cadmium (Cd) toxicity in spinach through reducing Cd uptake and improving the activity of anti-oxidant system[J]. Applied Ecology and Environmental Research, 2018, 16(6):7575-7583 Kolahi M, Mohajel Kazemi E, Yazdi M, et al. Oxidative stress induced by cadmium in lettuce (Lactuca sativa Linn.):Oxidative stress indicators and prediction of their genes[J]. Plant Physiology and Biochemistry, 2020, 146:71-89 Saleh S R, Kandeel M M, Ghareeb D, et al. Wheat biological responses to stress caused by cadmium, nickel and lead[J]. Science of the Total Environment, 2020, 706:136013 Zeng P, Guo Z H, Xiao X Y, et al. Physiological stress responses, mineral element uptake and phytoremediation potential of Morus alba L. in cadmium-contaminated soil[J]. Ecotoxicology and Environmental Safety, 2020, 189:109973 Catav S S, Genç T O, Oktay M K, et al. Cadmium toxicity in wheat:Impacts on element contents, antioxidantenzyme activities, oxidative stress, and genotoxicity[J]. Bulletin of Environmental Contamination and Toxicology, 2020, 104(1):71-77 Majumdar S, Chakraborty B, Kundu R. Comparative analysis of cadmium-induced stress responses by the aromatic and non-aromatic rice genotypes of West Bengal[J].Environmental Science and Pollution Research, 2018, 25(19):18451-18461 Chen L, Yuan S K, Liu X G, et al. Genotoxicity response of Vicia faba seedlings to cadmium in soils as characterized by direct soil exposure and micronucleus test[J]. Ecotoxicology, 2020, 29(1):65-74 Toth T, Zsiros O, Kis M, et al. Cadmium exerts its toxic effects on photosynthesis via a cascade mechanism in the cyanobacterium,Synechocystis PCC6803[J]. Plant Cell and Environment, 2012, 35(12):2075-2086 Gharbi F, Zribi L, Ben Daly A, et al. Photosynthetic responses of tomato leavesto salt and cadmium stresses:Growth and chlorophyll a fluorescence kinetic analyses[J]. Polish Journal of Environmental Studies, 2018, 27(6):2499-2508 Gallego S M, Pena L B, Barcia R A, et al. Unravelling cadmium toxicity and tolerance in plants:Insight into regulatory mechanisms[J]. Environmental and Experimental Botany, 2012, 83:33-46 Pereira De Araújo R, Furtado De Almeida A, Silva Pereira L, et al. Photosynthetic, antioxidative, molecular and ultrastructural responses of young cacao plants to Cd toxicity in the soil[J]. Ecotoxicology and Environmental Safety, 2017, 144:148-157 Li X H, Zhou Q X, Sun X Y, et al. Effects of cadmium on uptake and translocation of nutrient elements in different welsh onion (Allium fistulosum L.) cultivars[J]. Food Chemistry, 2016, 194:101-110 Liu Y, Zhang C B, Zhao Y L, et al. Effects of growing seasons and genotypes on the accumulation of cadmium and mineral nutrients in rice grownin cadmium contaminated soil[J]. Science of the Total Environment, 2017, 579:1282-1288 Song W E, Chen S B, Liu J F, et al. Variation of Cd concentration in various rice cultivars and derivation of cadmium toxicity thresholds for paddy soil by species-sensitivity distribution[J]. Journal of Integrative Agriculture, 2015, 14(9):1845-1854 Varalakshmi L R, Ganeshamurthy A N. Phytotoxicity of cadmium in radish and its effects on growth, yield, and cadmium uptake[J]. Communications in Soil Science and Plant Analysis, 2013, 44(9):1444-1456 Wang X X, Gao Y, Feng Y, et al. Cadmium stress disrupts the endomembrane organelles and endocytosis during Picea wilsonii pollen germination and tube growth[J]. PLoS One, 2014, 9(4):e94721 Pan J T, Li D Q, Shu Z F, et al. CsPDC-E1α, a novel pyruvate dehydrogenase complex E1α subunit gene from Camellia sinensis, is induced during cadmium inhibiting pollen tube growth[J]. Canadian Journal of Plant Science, 2018, 98(1):62-70 Maity S, Banerjee R, Goswami P, et al. Oxidative stress responses of two different ecophysiological species of earthworms (Eutyphoeus waltoni and Eisenia fetida) exposed to Cd-contaminated soil[J]. Chemosphere, 2018, 203:307-317 Sinkakarimi M H, Solgi E, Hosseinzadeh Colagar A. Interspecific differences in toxicological response and subcellular partitioning of cadmium and lead in three earthworm species[J]. Chemosphere, 2020, 238:124595 Mo X H, Qiao Y H, Sun Z J, et al. Molecular toxicity of earthworms induced by cadmium contaminated soil and biomarkers screening[J]. Journal of Environmental Sciences, 2012, 24(8):1504-1510 Chai L H, Yang Y J, Yang H Y, et al. Transcriptome analysis of genes expressed in the earthworm Eisenia fetida in response to cadmium exposure[J]. Chemosphere, 2020, 240:124902 Nakamori T, Fujimori A, Kinoshita K, et al. mRNA expression of a cadmium-responsive gene is a sensitive biomarker of cadmium exposure in the soil collembolan Folsomia candida[J]. Environmental Pollution, 2010, 158(5):1689-1695 Elyamine A, Afzal J, Rana M, et al. Phenanthrene mitigates cadmium toxicity in earthworms Eisenia fetida (epigeic specie) and Aporrectodea caliginosa (endogeic specie) in soil[J]. International Journal of Environmental Research and Public Health, 2018, 15(11):2384 Moyson S, Town R M, Vissenberg K, et al. The effect of metal mixture composition on toxicity to C. elegans at individual and population levels[J]. PLoS One, 2019, 14(6):e218929 Nica D V, Filimon M N, Bordean D, et al. Impact of soil cadmium on land snails:A two-stage exposure approach under semi-field conditions using bioaccumulative and conchological end-points of exposure[J]. PLoS One, 2015, 10(3):e116397 Takacs V, Molnar L, Klimek B, et al. Exposure of Eisenia andrei (Oligochaeta; Lumbricidea) to cadmium polluted soil inhibits earthworm maturation and reproduction but not restoration of experimentally depleted coelomocytes or regeneration of amputated segments[J]. Folia Biologica-Krakow, 2016, 64(4):275-284 牛晓倩. 等足目三种潮虫(甲壳动物亚门:等足目:潮虫亚目)对土壤重金属镉的毒性效应与回避行为研究[D]. 临汾:山西师范大学, 2015:33-38 Niu X Q. Toxicological effects and avoidance behavior of soil heavy metal cadmium on three woodlice (Crustacea:Isopoda:Oniscidae)[D]. Linfen:Shanxi Normal University, 2015:33 -38(in Chinese)
Moyson S, Vissenberg K, Fransen E, et al. Mixture effects of copper, cadmium, and zinc on mortality and behavior of Caenorhabditis elegans[J]. Environmental Toxicology and Chemistry, 2018, 37(1):145-159 孟祥怀. 镉污染下蚯蚓行为和微生物群落结构对杨树凋落物分解的影响研究[D]. 昆明:云南大学, 2019:17-23 Meng X H. Effects of cadmium pollution on earthworm behavior and microbial community structure on decomposition of poplar litter[D]. Kunming:Yunnan University, 2019:17 -23(in Chinese)
Wang K, Qiao Y H, Zhang H Q, et al. Influence of cadmium-contaminated soil on earthworm communities in a subtropical area of China[J]. Applied Soil Ecology, 2018, 127:64-73 Johansen J L, David M F, Ekelund F, et al. Wood ash decreases cadmium toxicity to the soil nematode Caenorhabditis elegans[J]. Ecotoxicology and Environmental Safety, 2019, 172:290-295 Filipović L, Romić M, Romić D, et al. Organic matter and salinity modify cadmium soil (phyto)availability[J]. Ecotoxicology and Environmental Safety, 2018, 147:824-831 Irizar A, Rodríguez M P, Izquierdo A, et al. Effects of soil organic matter content on cadmium toxicity in Eisenia Fetida:Implications for the use of biomarkers and standard toxicity tests[J]. Archives of Environmental Contamination and Toxicology, 2015, 68(1):181-192 Włostowski T, Kozłowski P, Baszkiewicz-Tiszczenko B, et al. Cadmium accumulation and pathological alterations in the midgut gland of terrestrial snail Helix pomatia L. from a zinc smelter area:Role of soil pH[J]. Bulletin of Environmental Contamination and Toxicology, 2016, 96(4):484-489 Tan X P, Kong L, Yan H R, et al. Influence of soil factors on the soil enzyme inhibition by Cd[J]. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science, 2014, 64(8):666-674 Honma T, Ohba H, Kaneko-Kadokura A, et al. Optimal soil Eh, pH, and water management for simultaneously minimizing arsenic and cadmium concentrations in rice grains[J]. Environmental Science & Technology, 2016, 50(8):4178-4185 Liu T T, Huang D Y, Zhu Q H, et al. Increasing soil moisture faciliates the outcomes of exogenous sulfate rather than element sulfur in reducing cadmium accumulation in rice (Oryza sativa L.)[J]. Ecotoxicology and Environmental Safety, 2020, 191:110200 Zhang S L, Ni X L, Arif M, et al. Salinity influences Cd accumulation and distribution characteristics in two contrasting halophytes,Suaeda glauca and Limonium aureum[J]. Ecotoxicology and Environmental Safety, 2020, 191:110230 Wang M, Chen S B, Chen L, et al. Saline stress modifies the effect of cadmium toxicity on soil archaeal communities[J]. Ecotoxicology and Environmental Safety, 2019, 182:109431 Liu H L, Li M, Zhou J, et al. Effects of soil properties and aging process on the acute toxicity of cadmium to earthworm Eisenia fetida[J]. Environmental Science and Pollution Research, 2018, 25(4):3708-3717 刘彬, 孙聪, 陈世宝, 等. 水稻土中外源Cd老化的动力学特征与老化因子[J]. 中国环境科学, 2015, 35(7):2137-2145 Liu B, Sun C, Chen S B, et al. Dynamic characteristics and ageing factors of Cd added to paddy soils with various properties[J]. China Environmental Science, 2015, 35(7):2137-2145(in Chinese)
Wang L J, Zhang W J, Wang J H, et al. Toxicity of enrofloxacin and cadmium alone and in combination to enzymatic activities and microbial community structure in soil[J]. Environmental Geochemistry and Health, 2019, 41(6):2593-2606 Chen X, Gu X Y, Zhao X P, et al. Species-dependent toxicity, accumulation, and subcellular partitioning of cadmium in combination with tetrabromobisphenol A in earthworms[J]. Chemosphere, 2018, 210:1042-1050 Yang G L, Chen C, Wang Y H, et al. Joint toxicity of chlorpyrifos, atrazine, and cadmium at lethal concentrations to the earthworm Eisenia fetida[J]. Environmental Science and Pollution Research, 2015, 22(12):9307-9315 Uwizeyimana H, Wang M, Chen W P. Evaluation of combined noxious effects of siduron and cadmium on the earthworm Eisenia fetida[J]. Environmental Science and Pollution Research, 2017, 24(6):5349-5359 Wu B, Liu Z T, Xu Y, et al. Combined toxicity of cadmium and lead on the earthworm Eisenia fetida (Annelida, Oligochaeta)[J]. Ecotoxicology and Environmental Safety, 2012, 81:122-126 Guo J K, Zhou R, Ren X H, et al. Effects of salicylic acid, Epi-brassinolide and calcium on stress alleviation and Cd accumulation in tomato plants[J]. Ecotoxicology and Environmental Safety, 2018, 157:491-496 Nouairi I, Jalali K, Essid S, et al. Alleviation of cadmium-induced genotoxicity and cytotoxicity by calcium chloride in faba bean (Vicia faba L. var. minor) roots[J]. Physiology and Molecular Biology of Plants, 2019, 25(4):921-931 Wang H R, Che Y H, Huang D, et al. Hydrogen sulfide mediated alleviation of cadmium toxicity in Phlox paniculata L. and establishment of a comprehensive evaluation model for corresponding strategy[J]. International Journal of Phytoremediation, 2020, 22(10):1-11 Paschalidis C, Kavvadias V, Dimitrakopoulou S, et al. Effects of cadmium and lead on growth, yield, and metal accumulation in cabbage[J]. Communications in Soil Science and Plant Analysis, 2013, 44(1-4):632-644 Liu Z L, Chen W, He X Y, et al. Cadmium-induced physiological response in Lonicera japonica thunb[J]. Clean-Soil Air Water, 2013, 41(5):478-484 Fajana H O, Jegede O O, James K, et al. Uptake, toxicity, and maternal transfer of cadmium in the oribatid soil mite,Oppia nitens:Implication in the risk assessment of cadmium to soil invertebrates[J]. Environmental Pollution, 2020, 259:113912 Coeurdassier M, Scheifler R, de Vaufleury A, et al. Earthworms influence metal transfer from soil to snails[J]. Applied Soil Ecology, 2007, 35(2):302-310 成杰民, 俞协治, 黄铭洪. 蚯蚓-菌根相互作用对土壤-植物系统中Cd迁移转化的影响[J]. 环境科学学报, 2007, 27(2):228-234 Cheng J M, Yu X Z, Huang M H. Effect of earthworm-mycorriza interaction on transformation of Cd from soil to plant[J]. Acta Scientiae Circumstantiae, 2007, 27(2):228-234(in Chinese)
Du Y L, He M M, Xu M, et al. Interactive effects between earthworms and maize plants on the accumulation and toxicity of soil cadmium[J]. Soil Biology and Biochemistry, 2014, 72:193-202 Ma Y, Oliveira R S, Freitas H, et al. Biochemical and molecular mechanisms of plant-microbe-metal interactions:Relevance for phytoremediation[J]. Frontiers in Plant Science, 2016, 7:918 Fiket Ž, Medunić G, Vidaković-Cifrek Ž, et al. Effect of coal mining activities and related industry on composition, cytotoxicity and genotoxicity of surrounding soils[J]. Environmental Science and Pollution Research, 2020, 27(6):6613-6627 李永进, 李培军, 杨桂芬, 等. 重金属污染土壤毒性的大型蚤法诊断[J]. 农业环境科学学报, 2003, 22(2):159-162 Li Y J, Li P J, Yang G F, et al. et al. Assessment on ecotoxicity of heavy metals in contaminated soils by Daphnia magna[J]. Journal of Agro-Environment Science, 2003, 22(2):159-162(in Chinese)
-

计量
- 文章访问数: 4515
- HTML全文浏览数: 4515
- PDF下载数: 170
- 施引文献: 0