土壤镉污染的生物毒性研究进展

徐佳慧, 王萌, 张润, 吴玲玲. 土壤镉污染的生物毒性研究进展[J]. 生态毒理学报, 2020, 15(5): 82-91. doi: 10.7524/AJE.1673-5897.20200424002
引用本文: 徐佳慧, 王萌, 张润, 吴玲玲. 土壤镉污染的生物毒性研究进展[J]. 生态毒理学报, 2020, 15(5): 82-91. doi: 10.7524/AJE.1673-5897.20200424002
Xu Jiahui, Wang Meng, Zhang Run, Wu Lingling. Toxicity of Cadmium Pollution in Soil to Organisms: A Review[J]. Asian journal of ecotoxicology, 2020, 15(5): 82-91. doi: 10.7524/AJE.1673-5897.20200424002
Citation: Xu Jiahui, Wang Meng, Zhang Run, Wu Lingling. Toxicity of Cadmium Pollution in Soil to Organisms: A Review[J]. Asian journal of ecotoxicology, 2020, 15(5): 82-91. doi: 10.7524/AJE.1673-5897.20200424002

土壤镉污染的生物毒性研究进展

    作者简介: 徐佳慧(1996-),女,硕士研究生,研究方向为土壤生态毒理学,E-mail:1832844@tongji.edu.cn
    通讯作者: 吴玲玲, E-mail: wulingling@tongji.edu.cn
  • 基金项目:

    中央高校基本科研业务费专项基金资助项目(04002150021);水体污染控制与治理科技重大专项(2017ZX07603-003)

  • 中图分类号: X171.5

Toxicity of Cadmium Pollution in Soil to Organisms: A Review

    Corresponding author: Wu Lingling, wulingling@tongji.edu.cn
  • Fund Project:
  • 摘要: 土壤镉污染日益严重,镉污染影响土壤生物的数量、多样性、生长代谢和基因表达等方面。笔者从土壤镉污染对动物、植物和微生物的毒性作用、影响镉生物毒性的因素以及关于镉生物毒性的研究方法3个方面总结了目前的研究进展,并对今后的研究方向进行了探讨,以期为完善土壤环境质量评价体系提供科学依据。
  • 加载中
  • Kumar V, Sharma A, Kaur P, et al. Pollution assessment of heavy metals in soils of India and ecological risk assessment:A state-of-the-art[J]. Chemosphere, 2019, 216:449-462
    生态环境部, 国家市场监督管理总局. GB15618-2018土壤环境质量农用地土壤污染风险管控标准(试行)[S]. 北京:中国环境出版集团, 2018
    陈能场, 郑煜基, 何晓峰, 等. 《全国土壤污染状况调查公报》探析[J]. 农业环境科学学报, 2017, 36(9):1689-1692

    Chen N C, Zheng Y J, He X F, et al. Analysis of the Report on the national general survey of soil contamination[J]. Journal of Agro-Environment Science, 2017, 36(9):1689-1692(in Chinese)

    Zhao H C, Yu L, Yu M J, et al. Nitrogen combined with biochar changed the feedback mechanism between soil nitrification and Cd availability in an acidic soil[J]. Journal of Hazardous Materials, 2020, 390:121631
    Kuang J L, Huang L N, He Z L, et al. Predicting taxonomic and functional structure of microbial communities in acid mine drainage[J]. ISME Journal, 2016, 10(6):1527-1539
    Kerou M, Offre P, Valledor L, et al. Proteomics and comparative genomics of Nitrososphaera viennensis reveal the core genome and adaptations of archaeal ammonia oxidizers[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(49):7937-7946
    Tian H X, Kong L, Megharaj M, et al. Contribution of attendant anions on cadmium toxicity to soil enzymes[J]. Chemosphere, 2017, 187:19-26
    Tan X P, Wang Z Q, Lu G N, et al. Kinetics of soil dehydrogenase in response to exogenous Cd toxicity[J]. Journal of Hazardous Materials, 2017, 329:299-309
    Wu B, Hou S Y, Peng D H, et al. Response of soil micro-ecology to different levels of cadmium in alkaline soil[J]. Ecotoxicology and Environmental Safety, 2018, 166:116-122
    Han J G, Wang S Y, Fan D W, et al. Time-dependent hormetic response of soil alkaline phosphatase induced by Cd and the association with bacterial community composition[J]. Microbial Ecology, 2019, 78(4):961-973
    Aamer M, Muhammad U H, Li Z, et al. Foliar application of glycinebetaine (GB) alleviates the cadmium (Cd) toxicity in spinach through reducing Cd uptake and improving the activity of anti-oxidant system[J]. Applied Ecology and Environmental Research, 2018, 16(6):7575-7583
    Kolahi M, Mohajel Kazemi E, Yazdi M, et al. Oxidative stress induced by cadmium in lettuce (Lactuca sativa Linn.):Oxidative stress indicators and prediction of their genes[J]. Plant Physiology and Biochemistry, 2020, 146:71-89
    Saleh S R, Kandeel M M, Ghareeb D, et al. Wheat biological responses to stress caused by cadmium, nickel and lead[J]. Science of the Total Environment, 2020, 706:136013
    Zeng P, Guo Z H, Xiao X Y, et al. Physiological stress responses, mineral element uptake and phytoremediation potential of Morus alba L. in cadmium-contaminated soil[J]. Ecotoxicology and Environmental Safety, 2020, 189:109973
    Catav S S, Genç T O, Oktay M K, et al. Cadmium toxicity in wheat:Impacts on element contents, antioxidantenzyme activities, oxidative stress, and genotoxicity[J]. Bulletin of Environmental Contamination and Toxicology, 2020, 104(1):71-77
    Majumdar S, Chakraborty B, Kundu R. Comparative analysis of cadmium-induced stress responses by the aromatic and non-aromatic rice genotypes of West Bengal[J].Environmental Science and Pollution Research, 2018, 25(19):18451-18461
    Chen L, Yuan S K, Liu X G, et al. Genotoxicity response of Vicia faba seedlings to cadmium in soils as characterized by direct soil exposure and micronucleus test[J]. Ecotoxicology, 2020, 29(1):65-74
    Toth T, Zsiros O, Kis M, et al. Cadmium exerts its toxic effects on photosynthesis via a cascade mechanism in the cyanobacterium,Synechocystis PCC6803[J]. Plant Cell and Environment, 2012, 35(12):2075-2086
    Gharbi F, Zribi L, Ben Daly A, et al. Photosynthetic responses of tomato leavesto salt and cadmium stresses:Growth and chlorophyll a fluorescence kinetic analyses[J]. Polish Journal of Environmental Studies, 2018, 27(6):2499-2508
    Gallego S M, Pena L B, Barcia R A, et al. Unravelling cadmium toxicity and tolerance in plants:Insight into regulatory mechanisms[J]. Environmental and Experimental Botany, 2012, 83:33-46
    Pereira De Araújo R, Furtado De Almeida A, Silva Pereira L, et al. Photosynthetic, antioxidative, molecular and ultrastructural responses of young cacao plants to Cd toxicity in the soil[J]. Ecotoxicology and Environmental Safety, 2017, 144:148-157
    Li X H, Zhou Q X, Sun X Y, et al. Effects of cadmium on uptake and translocation of nutrient elements in different welsh onion (Allium fistulosum L.) cultivars[J]. Food Chemistry, 2016, 194:101-110
    Liu Y, Zhang C B, Zhao Y L, et al. Effects of growing seasons and genotypes on the accumulation of cadmium and mineral nutrients in rice grownin cadmium contaminated soil[J]. Science of the Total Environment, 2017, 579:1282-1288
    Song W E, Chen S B, Liu J F, et al. Variation of Cd concentration in various rice cultivars and derivation of cadmium toxicity thresholds for paddy soil by species-sensitivity distribution[J]. Journal of Integrative Agriculture, 2015, 14(9):1845-1854
    Varalakshmi L R, Ganeshamurthy A N. Phytotoxicity of cadmium in radish and its effects on growth, yield, and cadmium uptake[J]. Communications in Soil Science and Plant Analysis, 2013, 44(9):1444-1456
    Wang X X, Gao Y, Feng Y, et al. Cadmium stress disrupts the endomembrane organelles and endocytosis during Picea wilsonii pollen germination and tube growth[J]. PLoS One, 2014, 9(4):e94721
    Pan J T, Li D Q, Shu Z F, et al. CsPDC-E1α, a novel pyruvate dehydrogenase complex E1α subunit gene from Camellia sinensis, is induced during cadmium inhibiting pollen tube growth[J]. Canadian Journal of Plant Science, 2018, 98(1):62-70
    Maity S, Banerjee R, Goswami P, et al. Oxidative stress responses of two different ecophysiological species of earthworms (Eutyphoeus waltoni and Eisenia fetida) exposed to Cd-contaminated soil[J]. Chemosphere, 2018, 203:307-317
    Sinkakarimi M H, Solgi E, Hosseinzadeh Colagar A. Interspecific differences in toxicological response and subcellular partitioning of cadmium and lead in three earthworm species[J]. Chemosphere, 2020, 238:124595
    Mo X H, Qiao Y H, Sun Z J, et al. Molecular toxicity of earthworms induced by cadmium contaminated soil and biomarkers screening[J]. Journal of Environmental Sciences, 2012, 24(8):1504-1510
    Chai L H, Yang Y J, Yang H Y, et al. Transcriptome analysis of genes expressed in the earthworm Eisenia fetida in response to cadmium exposure[J]. Chemosphere, 2020, 240:124902
    Nakamori T, Fujimori A, Kinoshita K, et al. mRNA expression of a cadmium-responsive gene is a sensitive biomarker of cadmium exposure in the soil collembolan Folsomia candida[J]. Environmental Pollution, 2010, 158(5):1689-1695
    Elyamine A, Afzal J, Rana M, et al. Phenanthrene mitigates cadmium toxicity in earthworms Eisenia fetida (epigeic specie) and Aporrectodea caliginosa (endogeic specie) in soil[J]. International Journal of Environmental Research and Public Health, 2018, 15(11):2384
    Moyson S, Town R M, Vissenberg K, et al. The effect of metal mixture composition on toxicity to C. elegans at individual and population levels[J]. PLoS One, 2019, 14(6):e218929
    Nica D V, Filimon M N, Bordean D, et al. Impact of soil cadmium on land snails:A two-stage exposure approach under semi-field conditions using bioaccumulative and conchological end-points of exposure[J]. PLoS One, 2015, 10(3):e116397
    Takacs V, Molnar L, Klimek B, et al. Exposure of Eisenia andrei (Oligochaeta; Lumbricidea) to cadmium polluted soil inhibits earthworm maturation and reproduction but not restoration of experimentally depleted coelomocytes or regeneration of amputated segments[J]. Folia Biologica-Krakow, 2016, 64(4):275-284
    牛晓倩. 等足目三种潮虫(甲壳动物亚门:等足目:潮虫亚目)对土壤重金属镉的毒性效应与回避行为研究[D]. 临汾:山西师范大学, 2015:33-38 Niu X Q. Toxicological effects and avoidance behavior of soil heavy metal cadmium on three woodlice (Crustacea:Isopoda:Oniscidae)[D]. Linfen:Shanxi Normal University, 2015:33

    -38(in Chinese)

    Moyson S, Vissenberg K, Fransen E, et al. Mixture effects of copper, cadmium, and zinc on mortality and behavior of Caenorhabditis elegans[J]. Environmental Toxicology and Chemistry, 2018, 37(1):145-159
    孟祥怀. 镉污染下蚯蚓行为和微生物群落结构对杨树凋落物分解的影响研究[D]. 昆明:云南大学, 2019:17-23 Meng X H. Effects of cadmium pollution on earthworm behavior and microbial community structure on decomposition of poplar litter[D]. Kunming:Yunnan University, 2019:17

    -23(in Chinese)

    Wang K, Qiao Y H, Zhang H Q, et al. Influence of cadmium-contaminated soil on earthworm communities in a subtropical area of China[J]. Applied Soil Ecology, 2018, 127:64-73
    Johansen J L, David M F, Ekelund F, et al. Wood ash decreases cadmium toxicity to the soil nematode Caenorhabditis elegans[J]. Ecotoxicology and Environmental Safety, 2019, 172:290-295
    Filipović L, Romić M, Romić D, et al. Organic matter and salinity modify cadmium soil (phyto)availability[J]. Ecotoxicology and Environmental Safety, 2018, 147:824-831
    Irizar A, Rodríguez M P, Izquierdo A, et al. Effects of soil organic matter content on cadmium toxicity in Eisenia Fetida:Implications for the use of biomarkers and standard toxicity tests[J]. Archives of Environmental Contamination and Toxicology, 2015, 68(1):181-192
    Włostowski T, Kozłowski P, Baszkiewicz-Tiszczenko B, et al. Cadmium accumulation and pathological alterations in the midgut gland of terrestrial snail Helix pomatia L. from a zinc smelter area:Role of soil pH[J]. Bulletin of Environmental Contamination and Toxicology, 2016, 96(4):484-489
    Tan X P, Kong L, Yan H R, et al. Influence of soil factors on the soil enzyme inhibition by Cd[J]. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science, 2014, 64(8):666-674
    Honma T, Ohba H, Kaneko-Kadokura A, et al. Optimal soil Eh, pH, and water management for simultaneously minimizing arsenic and cadmium concentrations in rice grains[J]. Environmental Science & Technology, 2016, 50(8):4178-4185
    Liu T T, Huang D Y, Zhu Q H, et al. Increasing soil moisture faciliates the outcomes of exogenous sulfate rather than element sulfur in reducing cadmium accumulation in rice (Oryza sativa L.)[J]. Ecotoxicology and Environmental Safety, 2020, 191:110200
    Zhang S L, Ni X L, Arif M, et al. Salinity influences Cd accumulation and distribution characteristics in two contrasting halophytes,Suaeda glauca and Limonium aureum[J]. Ecotoxicology and Environmental Safety, 2020, 191:110230
    Wang M, Chen S B, Chen L, et al. Saline stress modifies the effect of cadmium toxicity on soil archaeal communities[J]. Ecotoxicology and Environmental Safety, 2019, 182:109431
    Liu H L, Li M, Zhou J, et al. Effects of soil properties and aging process on the acute toxicity of cadmium to earthworm Eisenia fetida[J]. Environmental Science and Pollution Research, 2018, 25(4):3708-3717
    刘彬, 孙聪, 陈世宝, 等. 水稻土中外源Cd老化的动力学特征与老化因子[J]. 中国环境科学, 2015, 35(7):2137-2145

    Liu B, Sun C, Chen S B, et al. Dynamic characteristics and ageing factors of Cd added to paddy soils with various properties[J]. China Environmental Science, 2015, 35(7):2137-2145(in Chinese)

    Wang L J, Zhang W J, Wang J H, et al. Toxicity of enrofloxacin and cadmium alone and in combination to enzymatic activities and microbial community structure in soil[J]. Environmental Geochemistry and Health, 2019, 41(6):2593-2606
    Chen X, Gu X Y, Zhao X P, et al. Species-dependent toxicity, accumulation, and subcellular partitioning of cadmium in combination with tetrabromobisphenol A in earthworms[J]. Chemosphere, 2018, 210:1042-1050
    Yang G L, Chen C, Wang Y H, et al. Joint toxicity of chlorpyrifos, atrazine, and cadmium at lethal concentrations to the earthworm Eisenia fetida[J]. Environmental Science and Pollution Research, 2015, 22(12):9307-9315
    Uwizeyimana H, Wang M, Chen W P. Evaluation of combined noxious effects of siduron and cadmium on the earthworm Eisenia fetida[J]. Environmental Science and Pollution Research, 2017, 24(6):5349-5359
    Wu B, Liu Z T, Xu Y, et al. Combined toxicity of cadmium and lead on the earthworm Eisenia fetida (Annelida, Oligochaeta)[J]. Ecotoxicology and Environmental Safety, 2012, 81:122-126
    Guo J K, Zhou R, Ren X H, et al. Effects of salicylic acid, Epi-brassinolide and calcium on stress alleviation and Cd accumulation in tomato plants[J]. Ecotoxicology and Environmental Safety, 2018, 157:491-496
    Nouairi I, Jalali K, Essid S, et al. Alleviation of cadmium-induced genotoxicity and cytotoxicity by calcium chloride in faba bean (Vicia faba L. var. minor) roots[J]. Physiology and Molecular Biology of Plants, 2019, 25(4):921-931
    Wang H R, Che Y H, Huang D, et al. Hydrogen sulfide mediated alleviation of cadmium toxicity in Phlox paniculata L. and establishment of a comprehensive evaluation model for corresponding strategy[J]. International Journal of Phytoremediation, 2020, 22(10):1-11
    Paschalidis C, Kavvadias V, Dimitrakopoulou S, et al. Effects of cadmium and lead on growth, yield, and metal accumulation in cabbage[J]. Communications in Soil Science and Plant Analysis, 2013, 44(1-4):632-644
    Liu Z L, Chen W, He X Y, et al. Cadmium-induced physiological response in Lonicera japonica thunb[J]. Clean-Soil Air Water, 2013, 41(5):478-484
    Fajana H O, Jegede O O, James K, et al. Uptake, toxicity, and maternal transfer of cadmium in the oribatid soil mite,Oppia nitens:Implication in the risk assessment of cadmium to soil invertebrates[J]. Environmental Pollution, 2020, 259:113912
    Coeurdassier M, Scheifler R, de Vaufleury A, et al. Earthworms influence metal transfer from soil to snails[J]. Applied Soil Ecology, 2007, 35(2):302-310
    成杰民, 俞协治, 黄铭洪. 蚯蚓-菌根相互作用对土壤-植物系统中Cd迁移转化的影响[J]. 环境科学学报, 2007, 27(2):228-234

    Cheng J M, Yu X Z, Huang M H. Effect of earthworm-mycorriza interaction on transformation of Cd from soil to plant[J]. Acta Scientiae Circumstantiae, 2007, 27(2):228-234(in Chinese)

    Du Y L, He M M, Xu M, et al. Interactive effects between earthworms and maize plants on the accumulation and toxicity of soil cadmium[J]. Soil Biology and Biochemistry, 2014, 72:193-202
    Ma Y, Oliveira R S, Freitas H, et al. Biochemical and molecular mechanisms of plant-microbe-metal interactions:Relevance for phytoremediation[J]. Frontiers in Plant Science, 2016, 7:918
    Fiket Ž, Medunić G, Vidaković-Cifrek Ž, et al. Effect of coal mining activities and related industry on composition, cytotoxicity and genotoxicity of surrounding soils[J]. Environmental Science and Pollution Research, 2020, 27(6):6613-6627
    李永进, 李培军, 杨桂芬, 等. 重金属污染土壤毒性的大型蚤法诊断[J]. 农业环境科学学报, 2003, 22(2):159-162

    Li Y J, Li P J, Yang G F, et al. et al. Assessment on ecotoxicity of heavy metals in contaminated soils by Daphnia magna[J]. Journal of Agro-Environment Science, 2003, 22(2):159-162(in Chinese)

  • 加载中
计量
  • 文章访问数:  4515
  • HTML全文浏览数:  4515
  • PDF下载数:  170
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-04-24
徐佳慧, 王萌, 张润, 吴玲玲. 土壤镉污染的生物毒性研究进展[J]. 生态毒理学报, 2020, 15(5): 82-91. doi: 10.7524/AJE.1673-5897.20200424002
引用本文: 徐佳慧, 王萌, 张润, 吴玲玲. 土壤镉污染的生物毒性研究进展[J]. 生态毒理学报, 2020, 15(5): 82-91. doi: 10.7524/AJE.1673-5897.20200424002
Xu Jiahui, Wang Meng, Zhang Run, Wu Lingling. Toxicity of Cadmium Pollution in Soil to Organisms: A Review[J]. Asian journal of ecotoxicology, 2020, 15(5): 82-91. doi: 10.7524/AJE.1673-5897.20200424002
Citation: Xu Jiahui, Wang Meng, Zhang Run, Wu Lingling. Toxicity of Cadmium Pollution in Soil to Organisms: A Review[J]. Asian journal of ecotoxicology, 2020, 15(5): 82-91. doi: 10.7524/AJE.1673-5897.20200424002

土壤镉污染的生物毒性研究进展

    通讯作者: 吴玲玲, E-mail: wulingling@tongji.edu.cn
    作者简介: 徐佳慧(1996-),女,硕士研究生,研究方向为土壤生态毒理学,E-mail:1832844@tongji.edu.cn
  • 1. 同济大学环境科学与工程学院, 上海 200092;
  • 2. 上海污染控制与生态安全研究院, 上海 200092
基金项目:

中央高校基本科研业务费专项基金资助项目(04002150021);水体污染控制与治理科技重大专项(2017ZX07603-003)

摘要: 土壤镉污染日益严重,镉污染影响土壤生物的数量、多样性、生长代谢和基因表达等方面。笔者从土壤镉污染对动物、植物和微生物的毒性作用、影响镉生物毒性的因素以及关于镉生物毒性的研究方法3个方面总结了目前的研究进展,并对今后的研究方向进行了探讨,以期为完善土壤环境质量评价体系提供科学依据。

English Abstract

参考文献 (68)

返回顶部

目录

/

返回文章
返回