Zaccariello G, Back M, Zanello M, et al. Formation and controlled growth of bismuth titanate phases into mesoporous silica nanoparticles:An efficient self-sealing nanosystem for UV filtering in cosmetic formulation[J]. ACS Applied Materials & Interfaces, 2017, 9(2):1913-1921
|
Vera P, Echegoyen Y, Canellas E, et al. Nano selenium as antioxidant agent in a multilayer food packaging material[J]. Analytical and Bioanalytical Chemistry, 2016, 408(24):6659-6670
|
Lowry G V, Avellan A, Gilbertson L M. Opportunities and challenges for nanotechnology in the agri-tech revolution[J]. Nature Nanotechnology, 2019, 14(6):517-522
|
Arumugam V, Sriram P, Yen T J, et al. Nano-material as an excellent catalyst for reducing a series of nitroanilines and dyes:Triphosphonated ionic liquid- CuFe2O4-modified boron nitride[J]. Applied Catalysis B:Environmental, 2018, 222:99-114
|
Marrez D A, Abdelhamid A E, Darwesh O M. Eco-friendly cellulose acetate green synthesized silver nano-composite as antibacterial packaging system for food safety[J]. Food Packaging and Shelf Life, 2019, 20:100302
|
Zhang S Y, Xu X Y, Lin T S, et al. Recent advances in nano-materials for packaging of electronic devices[J]. Journal of Materials Science:Materials in Electronics, 2019, 30(15):13855-13868
|
Ibrahim M M, Mezni A, El-Sheshtawy H S, et al. Direct Z-scheme of Cu2O/TiO2 enhanced self-cleaning, antibacterial activity, and UV protection of cotton fiber under sunlight[J]. Applied Surface Science, 2019, 479:953-962
|
Jiao M X, Zhang P S, Meng J L, et al. Recent advancements in biocompatible inorganic nanoparticles towards biomedical applications[J]. Biomaterials Science, 2018, 6(4):726-745
|
Nierenberg D, Khaled A R, Flores O. Formation of a protein corona influences the biological identity of nanomaterials[J]. Reports of Practical Oncology & Radiotherapy, 2018, 23(4):300-308
|
Ho Y T, Azman N, Loh F W Y, et al. Protein corona formed from different blood plasma proteins affects the colloidal stability of nanoparticles differently[J]. Bioconjugate Chemistry, 2018, 29(11):3923-3934
|
Pareek V, Bhargava A, Bhanot V, et al. Formation and characterization of protein corona around nanoparticles:A review[J]. Journal of Nanoscience and Nanotechnology, 2018, 18(10):6653-6670
|
Carrillo-Carrion C, Bocanegra A I, Arnaiz B, et al. Triple-labeling of polymer-coated quantum dots and adsorbed proteins for tracing their fate in cell cultures[J]. ACS Nano, 2019, 13(4):4631-4639
|
Zhang H J, Wu T M, Yu W Q, et al. Ligand size and conformation affect the behavior of nanoparticles coated with in vitro and in vivo protein corona[J]. ACS Applied Materials & Interfaces, 2018, 10(10):9094-9103
|
Nienhaus K, Nienhaus G U. Towards a molecular-level understanding of the protein corona around nanoparticles-Recent advances and persisting challenges[J]. Current Opinion in Biomedical Engineering, 2019, 10:11-22
|
Vaishanav S K, Korram J, Nagwanshi R, et al. Adsorption kinetics and binding studies of protein quantum dots interaction:A spectroscopic approach[J]. Journal of Fluorescence, 2016, 26(3):855-865
|
Canoa P, Simón-Vázquez R, Popplewell J, et al. A quantitative binding study of fibrinogen and human serum albumin to metal oxide nanoparticles by surface plasmon resonance[J]. Biosensors & Bioelectronics, 2015, 74:376-383
|
Klapper Y, Maffre P, Shang L, et al. Low affinity binding of plasma proteins to lipid-coated quantum dots as observed by in situ fluorescence correlation spectroscopy[J]. Nanoscale, 2015, 7(22):9980-9984
|
Lacerda S H, Park J J, Meuse C, et al. Interaction of gold nanoparticles with common human blood proteins[J]. ACS Nano, 2010, 4(1):365-379
|
Aleksenko S S, Matczuk M, Timerbaev A R. Characterization of interactions of metal-containing nanoparticles with biomolecules by CE:An update (2012-2016)[J]. Electrophoresis, 2017, 38(13-14):1661-1668
|
Chetwynd A J, Guggenheim E J, Briffa S M, et al. Current application of capillary electrophoresis in nanomaterial characterisation and its potential to characterise the protein and small molecule corona[J]. Nanomaterials, 2018, 8(2):E99
|
Adam V, Vaculovicova M. Capillary electrophoresis and nanomaterials-Part I:Capillary electrophoresis of nanomaterials[J]. Electrophoresis, 2017, 38(19):2389-2404
|
Legat J, Matczuk M, Timerbaev A, et al. CE separation and ICP-MS detection of gold nanoparticles and their protein conjugates[J]. Chromatographia, 2017, 80(11):1695-1700
|
Gomes F P, Yates J R 3rd. Recent trends of capillary electrophoresis-mass spectrometry in proteomics research[J]. Mass Spectrometry Reviews, 2019, 38(6):445-460
|
Faserl K, Chetwynd A J, Lynch I, et al. Corona isolation method matters:Capillary electrophoresis mass spectrometry based comparison of protein corona compositions following on-particle versus in-solution or in-gel digestion[J]. Nanomaterials, 2019, 9(6):898
|
Lin Y J, Yang J Y, Shu T Y, et al. Detection of C-reactive protein based on magnetic nanoparticles and capillary zone electrophoresis with laser-induced fluorescence detection[J]. Journal of Chromatography A, 2013, 1315:188-194
|
Hadjidemetriou M, Kostarelos K. Nanomedicine:Evolution of the nanoparticle corona[J]. Nature Nanotechnology, 2017, 12(4):288-290
|
Fleischer C C, Payne C K. Nanoparticle-cell interactions:Molecular structure of the protein corona and cellular outcomes[J]. Accounts of Chemical Research, 2014, 47(8):2651-2659
|
Li N, Zeng S, He L, et al. Probing nanoparticle-Protein interaction by capillary electrophoresis[J]. Analytical Chemistry, 2010, 82(17):7460-7466
|
Matczuk M, Anecka K, Scaletti F, et al. Speciation of metal-based nanomaterials in human serum characterized by capillary electrophoresis coupled to ICP-MS:A case study of gold nanoparticles[J]. Metallomics:Integrated Biometal Science, 2015, 7(9):1364-1370
|
Matczuk M, Legat J, Timerbaev A R, et al. A sensitive and versatile method for characterization of protein-mediated transformations of quantum dots[J]. The Analyst, 2016, 141(8):2574-2580
|
Wang J H, Li J Y, Teng Y W, et al. Studies on multivalent interactions of quantum dots-protein self-assemble using fluorescence coupled capillary electrophoresis[J]. Journal of Nanoparticle Research, 2014, 16(7):1-7
|
Matczuk M, Legat J, Shtykov S N, et al. Characterization of the protein corona of gold nanoparticles by an advanced treatment of CE-ICP-MS data[J]. Electrophoresis, 2016, 37(15-16):2257-2259
|
Boulos S P, Davis T A, Yang J A, et al. Nanoparticle-protein interactions:A thermodynamic and kinetic study of the adsorption of bovine serum albumin to gold nanoparticle surfaces[J]. Langmuir:The ACS Journal of Surfaces and Colloids, 2013, 29(48):14984-14996
|
Wang J H, Li J Y, Li J C, et al. In-capillary self-assembly study of quantum dots and protein using fluorescence coupled capillary electrophoresis[J]. Electrophoresis, 2015, 36(14):1523-1528
|
Wang J H, Li J Y, Li J C, et al. In-capillary self-assembly and proteolytic cleavage of polyhistidine peptide capped quantum dots[J]. Analytica Chimica Acta, 2015, 895:112-117
|
Wang J H, Yang L, Liu L, et al. Investigation of multivalent interactions between conjugate of quantum dots with c-Myc peptide tag and the anti-c-Myc antibody by capillary electrophoresis with fluorescence detection[J]. Journal of Separation Science, 2016, 39(23):4653-4659
|
Ramírez-García G, d'Orlyé F, Gutiérrez-Granados S, et al. Electrokinetic Hummel-Dreyer characterization of nanoparticle-plasma protein corona:The non-specific interactions between PEG-modified persistent luminescence nanoparticles and albumin[J]. Colloids and Surfaces B, Biointerfaces, 2017, 159:437-444
|
Matczuk M, Legat J, Scaletti F, et al. The fate of differently functionalized gold nanorods in human serum:A response from capillary electrophoresis-inductively coupled plasma mass spectrometry[J]. Journal of Chromatography A, 2017, 1499:222-225
|
Wang J H, Fan J, Li J C, et al. In-capillary probing of quantum dots and fluorescent protein self-assembly and displacement using Förster resonance energy transfer[J]. Journal of Separation Science, 2017, 40(4):933-939
|
Alsudir S, Lai E P C. Electrosteric stabilization of colloidal TiO2 nanoparticles with DNA and polyethylene glycol for selective enhancement of UV detection sensitivity in capillary electrophoresis analysis[J]. Analytical and Bioanalytical Chemistry, 2017, 409(7):1857-1868
|
Stanisavljevic M, Janu L, Smerkova K, et al. Study of streptavidin-modified quantum dots by capillary electrophoresis[J]. Chromatographia, 2013, 76(7-8):335-343
|
Stanisavljevic M, Chomoucka J, Dostalova S, et al. Interactions between CdTe quantum dots and DNA revealed by capillary electrophoresis with laser-induced fluorescence detection[J]. Electrophoresis, 2014, 35(18):2587-2592
|
Girardot M, d'Orlyé F, Descroix S, et al. Aptamer-conjugated nanoparticles:Preservation of targeting functionality demonstrated by microchip electrophoresis in frontal mode[J]. Analytical Biochemistry, 2013, 435(2):150-152
|
Grela D A, Zannoni V, Vizioli N M. Studying the interaction between peptides and polymeric nanoparticles used as pseudostationary phase in capillary electrochromatography[J]. Microchemical Journal, 2017, 130:153-156
|
Wang J H, Xia J. Preferential binding of a novel polyhistidine peptide dendrimer ligand on quantum dots probed by capillary electrophoresis[J]. Analytical Chemistry, 2011, 83(16):6323-6329
|
Brambilla D, Verpillot R, Le Droumaguet B, et al. PEGylated nanoparticles bind to and alter amyloid-beta peptide conformation:Toward engineering of functional nanomedicines for Alzheimer's disease[J]. ACS Nano, 2012, 6(7):5897-5908
|
Brambilla D, Verpillot R, Taverna M, et al. New method based on capillary electrophoresis with laser-induced fluorescence detection (CE-LIF) to monitor interaction between nanoparticles and the amyloid-β peptide[J]. Analytical Chemistry, 2010, 82(24):10083-10089
|
Ty'čová A, Ledvina V, Klepárník K. Recent advances in CE-MS coupling:Instrumentation, methodology, and applications[J]. Electrophoresis, 2017, 38(1):115-134
|
Liu R, Zhang S X, Wei C, et al. Metal stable isotope tagging:Renaissance of radioimmunoassay for multiplex and absolute quantification of biomolecules[J]. Accounts of Chemical Research, 2016, 49(5):775-783
|
Wang X L, Li L J, Li Z Y, et al. Determination of ascorbic acid in individual liver cancer cells by capillary electrophoresis with a platinum nanoparticles modified electrode[J]. Journal of Electroanalytical Chemistry, 2014, 712:139-145
|
You J, Zhao L G, Wang G W, et al. Quaternized cellulose-supported gold nanoparticles as capillary coatings to enhance protein separation by capillary electrophoresis[J]. Journal of Chromatography A, 2014, 1343:160-166
|