毛细管电泳技术在纳米材料毒性研究领域的应用进展

张凌燕, 黄沛力. 毛细管电泳技术在纳米材料毒性研究领域的应用进展[J]. 生态毒理学报, 2021, 16(4): 72-79. doi: 10.7524/AJE.1673-5897.20200711001
引用本文: 张凌燕, 黄沛力. 毛细管电泳技术在纳米材料毒性研究领域的应用进展[J]. 生态毒理学报, 2021, 16(4): 72-79. doi: 10.7524/AJE.1673-5897.20200711001
Zhang Lingyan, Huang Peili. Capillary Electrophoresis: Application and Progress for Toxicity Research of Nanomaterials[J]. Asian journal of ecotoxicology, 2021, 16(4): 72-79. doi: 10.7524/AJE.1673-5897.20200711001
Citation: Zhang Lingyan, Huang Peili. Capillary Electrophoresis: Application and Progress for Toxicity Research of Nanomaterials[J]. Asian journal of ecotoxicology, 2021, 16(4): 72-79. doi: 10.7524/AJE.1673-5897.20200711001

毛细管电泳技术在纳米材料毒性研究领域的应用进展

    作者简介: 张凌燕(1986-),女,博士研究生,研究方向为分析毒理学,E-mail:zhanglingyan680@139.com
    通讯作者: 黄沛力, E-mail: huangpl@ccmu.edu.cn
  • 基金项目:

    国家自然科学基金资助项目(81573201,81872667)

  • 中图分类号: X171.5

Capillary Electrophoresis: Application and Progress for Toxicity Research of Nanomaterials

    Corresponding author: Huang Peili, huangpl@ccmu.edu.cn
  • Fund Project:
  • 摘要: 纳米材料(nanomaterials,NMs)在各个领域的广泛应用导致其不可避免地通过环境暴露、职业暴露和医源性暴露进入人体。当NMs进入人体后,生理环境中复杂的生物分子都可能与NMs发生相互作用,不仅使NMs获得全新的生物学特性而影响其潜在毒性,还可能改变生物分子的结构和生物学功能而引发疾病。随着对NMs毒性效应研究的不断深入,能够详细描述NMs、生物分子以及NMs和生物分子相互作用形成的复合物的分析技术受到广泛关注。毛细管电泳技术(capillary electrophoresis,CE)以其高灵敏、高分辨、高通量、条件温和以及低消耗的优势在NMs与生物分子相互作用研究领域展现出巨大潜力。本文阐述了2010—2019年间CE技术研究NMs与蛋白质相互作用的动态行为表征、结合平衡分析、蛋白冠的形成和转换监测,以及NMs与其他生物分子相互作用的新进展。
  • 加载中
  • Zaccariello G, Back M, Zanello M, et al. Formation and controlled growth of bismuth titanate phases into mesoporous silica nanoparticles:An efficient self-sealing nanosystem for UV filtering in cosmetic formulation[J]. ACS Applied Materials & Interfaces, 2017, 9(2):1913-1921
    Vera P, Echegoyen Y, Canellas E, et al. Nano selenium as antioxidant agent in a multilayer food packaging material[J]. Analytical and Bioanalytical Chemistry, 2016, 408(24):6659-6670
    Lowry G V, Avellan A, Gilbertson L M. Opportunities and challenges for nanotechnology in the agri-tech revolution[J]. Nature Nanotechnology, 2019, 14(6):517-522
    Arumugam V, Sriram P, Yen T J, et al. Nano-material as an excellent catalyst for reducing a series of nitroanilines and dyes:Triphosphonated ionic liquid- CuFe2O4-modified boron nitride[J]. Applied Catalysis B:Environmental, 2018, 222:99-114
    Marrez D A, Abdelhamid A E, Darwesh O M. Eco-friendly cellulose acetate green synthesized silver nano-composite as antibacterial packaging system for food safety[J]. Food Packaging and Shelf Life, 2019, 20:100302
    Zhang S Y, Xu X Y, Lin T S, et al. Recent advances in nano-materials for packaging of electronic devices[J]. Journal of Materials Science:Materials in Electronics, 2019, 30(15):13855-13868
    Ibrahim M M, Mezni A, El-Sheshtawy H S, et al. Direct Z-scheme of Cu2O/TiO2 enhanced self-cleaning, antibacterial activity, and UV protection of cotton fiber under sunlight[J]. Applied Surface Science, 2019, 479:953-962
    Jiao M X, Zhang P S, Meng J L, et al. Recent advancements in biocompatible inorganic nanoparticles towards biomedical applications[J]. Biomaterials Science, 2018, 6(4):726-745
    Nierenberg D, Khaled A R, Flores O. Formation of a protein corona influences the biological identity of nanomaterials[J]. Reports of Practical Oncology & Radiotherapy, 2018, 23(4):300-308
    Ho Y T, Azman N, Loh F W Y, et al. Protein corona formed from different blood plasma proteins affects the colloidal stability of nanoparticles differently[J]. Bioconjugate Chemistry, 2018, 29(11):3923-3934
    Pareek V, Bhargava A, Bhanot V, et al. Formation and characterization of protein corona around nanoparticles:A review[J]. Journal of Nanoscience and Nanotechnology, 2018, 18(10):6653-6670
    Carrillo-Carrion C, Bocanegra A I, Arnaiz B, et al. Triple-labeling of polymer-coated quantum dots and adsorbed proteins for tracing their fate in cell cultures[J]. ACS Nano, 2019, 13(4):4631-4639
    Zhang H J, Wu T M, Yu W Q, et al. Ligand size and conformation affect the behavior of nanoparticles coated with in vitro and in vivo protein corona[J]. ACS Applied Materials & Interfaces, 2018, 10(10):9094-9103
    Nienhaus K, Nienhaus G U. Towards a molecular-level understanding of the protein corona around nanoparticles-Recent advances and persisting challenges[J]. Current Opinion in Biomedical Engineering, 2019, 10:11-22
    Vaishanav S K, Korram J, Nagwanshi R, et al. Adsorption kinetics and binding studies of protein quantum dots interaction:A spectroscopic approach[J]. Journal of Fluorescence, 2016, 26(3):855-865
    Canoa P, Simón-Vázquez R, Popplewell J, et al. A quantitative binding study of fibrinogen and human serum albumin to metal oxide nanoparticles by surface plasmon resonance[J]. Biosensors & Bioelectronics, 2015, 74:376-383
    Klapper Y, Maffre P, Shang L, et al. Low affinity binding of plasma proteins to lipid-coated quantum dots as observed by in situ fluorescence correlation spectroscopy[J]. Nanoscale, 2015, 7(22):9980-9984
    Lacerda S H, Park J J, Meuse C, et al. Interaction of gold nanoparticles with common human blood proteins[J]. ACS Nano, 2010, 4(1):365-379
    Aleksenko S S, Matczuk M, Timerbaev A R. Characterization of interactions of metal-containing nanoparticles with biomolecules by CE:An update (2012-2016)[J]. Electrophoresis, 2017, 38(13-14):1661-1668
    Chetwynd A J, Guggenheim E J, Briffa S M, et al. Current application of capillary electrophoresis in nanomaterial characterisation and its potential to characterise the protein and small molecule corona[J]. Nanomaterials, 2018, 8(2):E99
    Adam V, Vaculovicova M. Capillary electrophoresis and nanomaterials-Part I:Capillary electrophoresis of nanomaterials[J]. Electrophoresis, 2017, 38(19):2389-2404
    Legat J, Matczuk M, Timerbaev A, et al. CE separation and ICP-MS detection of gold nanoparticles and their protein conjugates[J]. Chromatographia, 2017, 80(11):1695-1700
    Gomes F P, Yates J R 3rd. Recent trends of capillary electrophoresis-mass spectrometry in proteomics research[J]. Mass Spectrometry Reviews, 2019, 38(6):445-460
    Faserl K, Chetwynd A J, Lynch I, et al. Corona isolation method matters:Capillary electrophoresis mass spectrometry based comparison of protein corona compositions following on-particle versus in-solution or in-gel digestion[J]. Nanomaterials, 2019, 9(6):898
    Lin Y J, Yang J Y, Shu T Y, et al. Detection of C-reactive protein based on magnetic nanoparticles and capillary zone electrophoresis with laser-induced fluorescence detection[J]. Journal of Chromatography A, 2013, 1315:188-194
    Hadjidemetriou M, Kostarelos K. Nanomedicine:Evolution of the nanoparticle corona[J]. Nature Nanotechnology, 2017, 12(4):288-290
    Fleischer C C, Payne C K. Nanoparticle-cell interactions:Molecular structure of the protein corona and cellular outcomes[J]. Accounts of Chemical Research, 2014, 47(8):2651-2659
    Li N, Zeng S, He L, et al. Probing nanoparticle-Protein interaction by capillary electrophoresis[J]. Analytical Chemistry, 2010, 82(17):7460-7466
    Matczuk M, Anecka K, Scaletti F, et al. Speciation of metal-based nanomaterials in human serum characterized by capillary electrophoresis coupled to ICP-MS:A case study of gold nanoparticles[J]. Metallomics:Integrated Biometal Science, 2015, 7(9):1364-1370
    Matczuk M, Legat J, Timerbaev A R, et al. A sensitive and versatile method for characterization of protein-mediated transformations of quantum dots[J]. The Analyst, 2016, 141(8):2574-2580
    Wang J H, Li J Y, Teng Y W, et al. Studies on multivalent interactions of quantum dots-protein self-assemble using fluorescence coupled capillary electrophoresis[J]. Journal of Nanoparticle Research, 2014, 16(7):1-7
    Matczuk M, Legat J, Shtykov S N, et al. Characterization of the protein corona of gold nanoparticles by an advanced treatment of CE-ICP-MS data[J]. Electrophoresis, 2016, 37(15-16):2257-2259
    Boulos S P, Davis T A, Yang J A, et al. Nanoparticle-protein interactions:A thermodynamic and kinetic study of the adsorption of bovine serum albumin to gold nanoparticle surfaces[J]. Langmuir:The ACS Journal of Surfaces and Colloids, 2013, 29(48):14984-14996
    Wang J H, Li J Y, Li J C, et al. In-capillary self-assembly study of quantum dots and protein using fluorescence coupled capillary electrophoresis[J]. Electrophoresis, 2015, 36(14):1523-1528
    Wang J H, Li J Y, Li J C, et al. In-capillary self-assembly and proteolytic cleavage of polyhistidine peptide capped quantum dots[J]. Analytica Chimica Acta, 2015, 895:112-117
    Wang J H, Yang L, Liu L, et al. Investigation of multivalent interactions between conjugate of quantum dots with c-Myc peptide tag and the anti-c-Myc antibody by capillary electrophoresis with fluorescence detection[J]. Journal of Separation Science, 2016, 39(23):4653-4659
    Ramírez-García G, d'Orlyé F, Gutiérrez-Granados S, et al. Electrokinetic Hummel-Dreyer characterization of nanoparticle-plasma protein corona:The non-specific interactions between PEG-modified persistent luminescence nanoparticles and albumin[J]. Colloids and Surfaces B, Biointerfaces, 2017, 159:437-444
    Matczuk M, Legat J, Scaletti F, et al. The fate of differently functionalized gold nanorods in human serum:A response from capillary electrophoresis-inductively coupled plasma mass spectrometry[J]. Journal of Chromatography A, 2017, 1499:222-225
    Wang J H, Fan J, Li J C, et al. In-capillary probing of quantum dots and fluorescent protein self-assembly and displacement using Förster resonance energy transfer[J]. Journal of Separation Science, 2017, 40(4):933-939
    Alsudir S, Lai E P C. Electrosteric stabilization of colloidal TiO2 nanoparticles with DNA and polyethylene glycol for selective enhancement of UV detection sensitivity in capillary electrophoresis analysis[J]. Analytical and Bioanalytical Chemistry, 2017, 409(7):1857-1868
    Stanisavljevic M, Janu L, Smerkova K, et al. Study of streptavidin-modified quantum dots by capillary electrophoresis[J]. Chromatographia, 2013, 76(7-8):335-343
    Stanisavljevic M, Chomoucka J, Dostalova S, et al. Interactions between CdTe quantum dots and DNA revealed by capillary electrophoresis with laser-induced fluorescence detection[J]. Electrophoresis, 2014, 35(18):2587-2592
    Girardot M, d'Orlyé F, Descroix S, et al. Aptamer-conjugated nanoparticles:Preservation of targeting functionality demonstrated by microchip electrophoresis in frontal mode[J]. Analytical Biochemistry, 2013, 435(2):150-152
    Grela D A, Zannoni V, Vizioli N M. Studying the interaction between peptides and polymeric nanoparticles used as pseudostationary phase in capillary electrochromatography[J]. Microchemical Journal, 2017, 130:153-156
    Wang J H, Xia J. Preferential binding of a novel polyhistidine peptide dendrimer ligand on quantum dots probed by capillary electrophoresis[J]. Analytical Chemistry, 2011, 83(16):6323-6329
    Brambilla D, Verpillot R, Le Droumaguet B, et al. PEGylated nanoparticles bind to and alter amyloid-beta peptide conformation:Toward engineering of functional nanomedicines for Alzheimer's disease[J]. ACS Nano, 2012, 6(7):5897-5908
    Brambilla D, Verpillot R, Taverna M, et al. New method based on capillary electrophoresis with laser-induced fluorescence detection (CE-LIF) to monitor interaction between nanoparticles and the amyloid-β peptide[J]. Analytical Chemistry, 2010, 82(24):10083-10089
    Ty'čová A, Ledvina V, Klepárník K. Recent advances in CE-MS coupling:Instrumentation, methodology, and applications[J]. Electrophoresis, 2017, 38(1):115-134
    Liu R, Zhang S X, Wei C, et al. Metal stable isotope tagging:Renaissance of radioimmunoassay for multiplex and absolute quantification of biomolecules[J]. Accounts of Chemical Research, 2016, 49(5):775-783
    Wang X L, Li L J, Li Z Y, et al. Determination of ascorbic acid in individual liver cancer cells by capillary electrophoresis with a platinum nanoparticles modified electrode[J]. Journal of Electroanalytical Chemistry, 2014, 712:139-145
    You J, Zhao L G, Wang G W, et al. Quaternized cellulose-supported gold nanoparticles as capillary coatings to enhance protein separation by capillary electrophoresis[J]. Journal of Chromatography A, 2014, 1343:160-166
  • 加载中
计量
  • 文章访问数:  1202
  • HTML全文浏览数:  1202
  • PDF下载数:  45
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-07-11
张凌燕, 黄沛力. 毛细管电泳技术在纳米材料毒性研究领域的应用进展[J]. 生态毒理学报, 2021, 16(4): 72-79. doi: 10.7524/AJE.1673-5897.20200711001
引用本文: 张凌燕, 黄沛力. 毛细管电泳技术在纳米材料毒性研究领域的应用进展[J]. 生态毒理学报, 2021, 16(4): 72-79. doi: 10.7524/AJE.1673-5897.20200711001
Zhang Lingyan, Huang Peili. Capillary Electrophoresis: Application and Progress for Toxicity Research of Nanomaterials[J]. Asian journal of ecotoxicology, 2021, 16(4): 72-79. doi: 10.7524/AJE.1673-5897.20200711001
Citation: Zhang Lingyan, Huang Peili. Capillary Electrophoresis: Application and Progress for Toxicity Research of Nanomaterials[J]. Asian journal of ecotoxicology, 2021, 16(4): 72-79. doi: 10.7524/AJE.1673-5897.20200711001

毛细管电泳技术在纳米材料毒性研究领域的应用进展

    通讯作者: 黄沛力, E-mail: huangpl@ccmu.edu.cn
    作者简介: 张凌燕(1986-),女,博士研究生,研究方向为分析毒理学,E-mail:zhanglingyan680@139.com
  • 1. 首都医科大学公共卫生学院, 北京 100069;
  • 2. 包头医学院公共卫生学院, 包头 014040
基金项目:

国家自然科学基金资助项目(81573201,81872667)

摘要: 纳米材料(nanomaterials,NMs)在各个领域的广泛应用导致其不可避免地通过环境暴露、职业暴露和医源性暴露进入人体。当NMs进入人体后,生理环境中复杂的生物分子都可能与NMs发生相互作用,不仅使NMs获得全新的生物学特性而影响其潜在毒性,还可能改变生物分子的结构和生物学功能而引发疾病。随着对NMs毒性效应研究的不断深入,能够详细描述NMs、生物分子以及NMs和生物分子相互作用形成的复合物的分析技术受到广泛关注。毛细管电泳技术(capillary electrophoresis,CE)以其高灵敏、高分辨、高通量、条件温和以及低消耗的优势在NMs与生物分子相互作用研究领域展现出巨大潜力。本文阐述了2010—2019年间CE技术研究NMs与蛋白质相互作用的动态行为表征、结合平衡分析、蛋白冠的形成和转换监测,以及NMs与其他生物分子相互作用的新进展。

English Abstract

参考文献 (51)

返回顶部

目录

/

返回文章
返回