水体硬度对铅水质基准值的影响及校正方法探究

梁为纲, 牛琳, 王珺瑜, 王晓蕾, 吴爱明, 汪霞, 赵晓丽. 水体硬度对铅水质基准值的影响及校正方法探究[J]. 生态毒理学报, 2021, 16(4): 191-206. doi: 10.7524/AJE.1673-5897.20200803001
引用本文: 梁为纲, 牛琳, 王珺瑜, 王晓蕾, 吴爱明, 汪霞, 赵晓丽. 水体硬度对铅水质基准值的影响及校正方法探究[J]. 生态毒理学报, 2021, 16(4): 191-206. doi: 10.7524/AJE.1673-5897.20200803001
Liang Weigang, Niu Lin, Wang Junyu, Wang Xiaolei, Wu Aiming, Wang Xia, Zhao Xiaoli. Effect of Water Hardness on Water Quality Criteria of Lead and Correction Method[J]. Asian journal of ecotoxicology, 2021, 16(4): 191-206. doi: 10.7524/AJE.1673-5897.20200803001
Citation: Liang Weigang, Niu Lin, Wang Junyu, Wang Xiaolei, Wu Aiming, Wang Xia, Zhao Xiaoli. Effect of Water Hardness on Water Quality Criteria of Lead and Correction Method[J]. Asian journal of ecotoxicology, 2021, 16(4): 191-206. doi: 10.7524/AJE.1673-5897.20200803001

水体硬度对铅水质基准值的影响及校正方法探究

    作者简介: 梁为纲(1995-),男,硕士,研究方向为水质基准,E-mail:beikeliangweigang@163.com
    通讯作者: 赵晓丽, E-mail: zhaoxiaoli_zxl@126.com
  • 基金项目:

    国家自然科学基金重大项目(41991315)

  • 中图分类号: X171.5

Effect of Water Hardness on Water Quality Criteria of Lead and Correction Method

    Corresponding author: Zhao Xiaoli, zhaoxiaoli_zxl@126.com
  • Fund Project:
  • 摘要: 水体硬度对铅的水生生物毒性具有显著影响,但我国当前关于铅水质基准的研究中还缺乏针对硬度影响的关注。本文选用“集合斜率”和“标准斜率”2种典型的硬度校正法对搜集筛选后的毒性数据做校正处理,通过物种敏感度分布法推导铅的淡水水质基准。结果表明,在水体硬度为100 mg·L-1(以CaCO3计)水平下,2种校正法所得铅的短期水质基准分别为90.7 μg·L-1和89.8 μg·L-1,长期基准分别为2.7 μg·L-1和3.9 μg·L-1;在急性毒性数据充足条件下,2种校正法所得基准值极为相近;而在慢性数据量较少情况下,2种方法所获得的长期基准值在较高硬度水平下表现出明显差异,对比之下,“标准斜率”法为更优选择;与未校正硬度的结果比较发现,水体硬度参数会对铅的水质基准值产生显著影响。该结论对我国其他同类水溶态金属(如镍、镉和铬(Ⅲ)等)的水质基准研究具有一定借鉴意义。
  • 加载中
  • 戴伟. 水生动物铅毒性作用的研究进展[J]. 安徽农业科学, 2010, 38(11):5819-5820

    Dai W. Advances in lead toxicity to aquatic animals[J]. Journal of Anhui Agricultural Sciences, 2010, 38(11):5819-5820(in Chinese)

    应波, 叶必雄, 鄂学礼, 等. 铅在水环境中的分布及其对健康的影响[J]. 环境卫生学杂志, 2016, 6(5):373-376

    Ying B, Ye B X, E X L, et al. Lead distribution in water environment and its health effects[J]. Journal of Environmental Hygiene, 2016, 6(5):373-376(in Chinese)

    Berglind R, Dave G, Sjöbeck M L. The effects of lead on delta-aminolevulinic acid dehydratase activity, growth, hemoglobin content, and reproduction in Daphnia magna[J]. Ecotoxicology and Environmental Safety, 1985, 9(2):216-229
    United States Environmental Protection Agency (US EPA). Ambient water quality criteria for lead. EPA 440/5-84-027.[R]. Duluth:Office of Water, US EPA, 1984
    United States Environmental Protection Agency (US EPA). Ambient water quality criteria for lead. EPA 4405-80-057.[R]. Duluth:Office of Water, US EPA, 1980
    Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand. Australian and New Zealand guidelines for fresh and marine water quality[R]. Canberra:Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, 2000
    Canadian Council of Ministers of the Environment (CCME). Canadian environmental quality guidelines[R]. Winnipeg:Canadian Council of Ministers of the Environment, 2010
    何丽, 蔡靳, 高富, 等. 铅水生生物基准研究与初步应用[J]. 环境科学与技术, 2014, 37(4):31-37

    , 95 He L, Cai J, Gao F, et al. Studies of freshwater aquatic life water ambient quality criteria for lead and their tentative application to risk assessment[J]. Environmental Science & Technology, 2014, 37(4):31-37, 95(in Chinese)

    廖静. 我国太湖水体中重金属污染分布特征及铅水质基准推导[D]. 南京:南京大学, 2014:51-52 Liao J. Distribution characterization of heavy metal pollution in Taihu Lake and the derivation of water quality criteria of lead in China[D]. Nanjing:Nanjing University, 2014:51

    -52(in Chinese)

    王菲, 廖静, 茅丹俊, 等. 中国典型河湖水体铅的水生生物安全基准与生态风险评价[J]. 生态毒理学报, 2017, 12(3):434-445

    Wang F, Liao J, Mao D J, et al. Aquatic quality criteria and ecological risk assessment for lead in typical waters of China[J]. Asian Journal of Ecotoxicology, 2017, 12(3):434-445(in Chinese)

    杨建军, 关卫省, 路屏. 缺水重污染河流可溶性金属Pb水质基准研究[J]. 环境保护科学, 2013, 39(4):17-22

    Yang J J, Guan W X, Lu P. Study on water quality criteria of soluble metal Pb in the river with water shortage and heavy pollution[J]. Environmental Protection Science, 2013, 39(4):17-22(in Chinese)

    杨绍贵, 孙成. 铅的国家水质基准研究[C]//中国毒理学会. 化学物质环境风险评估与基准/标准国际学术研讨会, 中国毒理学会环境与生态毒理学专业委员会第四届学术研讨会, 中国环境科学学会环境标准与基准专业委员会2015年学术研讨会. 北京:中国毒理学会, 2015:56-57
    赵芊渊, 侯俊, 王超, 等. 应用概率物种敏感度分布法研究太湖重金属水生生物水质基准[J]. 生态毒理学报, 2015, 10(6):121-128

    Zhao Q Y, Hou J, Wang C, et al. Deriving aquatic water quality criteria for heavy metals in Taihu Lake by probabilistic species sensitivity distribution[J]. Asian Journal of Ecotoxicology, 2015, 10(6):121-128(in Chinese)

    Bargar J R, Brown G E Jr, Parks G A Jr. Surface complexation of Pb(Ⅱ) at oxide-water interfaces:Ⅱ. XAFS and bond-valence determination of mononuclear Pb(Ⅱ) sorption products and surface functional groups on iron oxides[J]. Geochimica et Cosmochimica Acta, 1997, 61(13):2639-2652
    Botelho C M S, Boaventura R A R, Gonçalves M L S S. Interactions of lead(Ⅱ) with natural river water:Part I. Soluble organics[J]. Science of the Total Environment, 1994, 149(1-2):69-81
    Florence T M, Batley G E, Benes P. Chemical speciation in natural waters[J]. Critical Reviews in Analytical Chemistry, 1980, 9(3):219-296
    Waller P A, Pickering W F. The effect of pH on the lability of lead and cadmium sorbed on humic acid particles[J]. Chemical Speciation & Bioavailability, 1993, 5(1):11-22
    Besser J M, Brumbaugh W G, Brunson E L, et al. Acute and chronic toxicity of lead in water and diet to the amphipod Hyalella Azteca[J]. Environmental Toxicology and Chemistry, 2005, 24(7):1807
    Mebane C A, Dillon F S, Hennessy D P. Acute toxicity of cadmium, lead, zinc, and their mixtures to stream-resident fish and invertebrates[J]. Environmental Toxicology and Chemistry, 2012, 31(6):1334-1348
    Prothro M G. Office of water policy and technical guidance on interpretation and implementation of aquatic life metals criteria[R]. Washington DC:United States Environmental Protection Agency, 1993
    周怀东, 彭文启, 杜霞, 等. 中国地表水水质评价[J]. 中国水利水电科学研究院学报, 2004, 2(4):255-264

    Zhou H D, Peng W Q, Du X, et al. Assessment of surface water quality in China[J]. Journal of China Institute Water Resource and Hydropower Research, 2004, 2(4):255-264(in Chinese)

    吴丰昌. 水质基准理论与方法学及其案例研究[M]. 北京:科学出版社, 2012:89-91
    United States Environmental Protection Agency (US EPA). National recommended water quality criteria-Aquatic life criteria table[R]. Washington DC:US EPA, 2017
    Martin T R, Holdich D M. The acute lethal toxicity of heavy metals to peracarid crustaceans (with particular reference to fresh-water asellids and gammarids)[J]. Water Research, 1986, 20(9):1137-1147
    Shuhaimi-Othman M, Yakub N, Umirah N S, et al. Toxicity of eight metals to Malaysian freshwater midge larvae Chironomus javanus (Diptera, Chironomidae)[J]. Toxicology and Industrial Health, 2011, 27(10):879-886
    Lee D R. Development of an invertebrate bioassay to screen petroleum refinery effluents discharged into freshwater[D]. Blacksburg:Virginia Polytechnic Institute and State University, 1976:36-38
    Bascombe A D, Ellis J B, Revitt D M, et al. The development of ecotoxicological criteria in urban catchments[J]. Water Science and Technology, 1990, 22(10-11):173-179
    Chapman G A. Toxicity of copper, cadmium, and zinc to Pacific Northwest salmonids[D]. Corvallis:Oregon State University, 1975:55-58
    Khangarot B S, Ray P K. Sensitivity of midge larvae of Chironomus tentans Fabricius (Diptera Chironomidae) to heavy metals[J]. Bulletin of Environmental Contamination and Toxicology, 1989, 42(3):325-330
    Shuhaimi O M, Nadzifah Y, Umirah N S, et al. Toxicity of metals to an aquatic worm, Nais elinguis (Oligochaeta, Naididae)[J]. Research Journal of Environmental Toxicology, 2012, 6(4):122-132
    Call D J, Brooke L T, Ahmad N, et al. Aquatic pollutant hazard assessments and development of a hazard prediction technology by quantitative structure-activity relationships[R]. Madison:University of Wisconsin-Superior, Center for Lake Superior Environmental Studies, 1981
    Srivastava A K, Mishra S. Blood dyscrasia in a teleost, Colisa fasdatus after acute exposure to sublethal concentrations of lead[J]. Journal of Fish Biology, 1979, 14(2):199-203
    Diamond J M, Koplish D E, McMahon J Ⅲ, et al. Evaluation of the water-effect ratio procedure for metals in a riverine system[J]. Environmental Toxicology and Chemistry, 1997, 16(3):509-520
    Bhilave M, Muley D, Deshpande V. Biochemical changes in the fish Cirrhinus mrigala after acute and chronic exposure of heavy metals[J]. Nature Environment and Pollution Technology, 2008, 7:65
    Shazili M, Noor A, Mohd Ali A. Acute toxicity of heavy metals to the Malaysian giant prawn, Macrobrachium rosenbergii (de man)[C]. 11th MSMS Annual Seminar. Kuala Lumpur:University of Malaya, 1988
    石剑波, 吴永贵, 严亮, 等. 贵州喀斯特地区Pb、Zn的急性生物毒性效应[J]. 贵州农业科学, 2009, 37(6):89-92

    Shi J B, Wu Y G, Yan L, et al. The acute biological toxicity of Pb and Zn caused by zinc oxide industrial waste in Karst areas in Guizhou[J]. Guizhou Agricultural Sciences, 2009, 37(6):89-92(in Chinese)

    Datta S, Das R C. Influence of some abiotic environmental factors on acute toxicity of inorganic lead to Cyprinus carpio var communis (Linn.) and Catla catla (Ham.) in simulated toxic aquatic environment[J]. Toxicological & Environmental Chemistry, 2003, 85(4-6):203-219
    Gadkari A S, Marathe V B. Toxicity of cadmium and lead to a fish and a snail from two different habitats[J]. Indian Association Water Pollution Control Technology, 1983, 5:141-148
    Bailey H C, Liu D. Lumbriculus variegatus, a benthic Oligochaete, as a bioassay organism[R]. West Conshohocken:American Society for Testing and Materials International, 1980:205-215
    Hammermeister D, Northcott C, Brooke L, et al. Comparison of copper, lead and zinc toxicity to four animal species in laboratory and St. Louis River water[R]. Madison:Center for Lake Superior Environmental Studies, University of Wisconsin, Superior, 1982
    Shuhaimi-Othman M, Nadzifah Y, Umirah N S, et al. Toxicity of metals to tadpoles of the common Sunda toad, Duttaphrynus melanostictus[J]. Toxicological & Environmental Chemistry, 2012, 94(2):364-376
    Arias G S, Martinez-Tabche L, Galar I. Effects of paraquat and lead on fish Oreochromis hornorum[J]. Bulletin of Environmental Contamination and Toxicology, 1991, 46(2):237-241
    Beleau M H, Bartosz J A. Colorado River fisheries project:Acute toxicity of selected chemicals:Data base[R]. Moscow, Idaho:Department of Fish Resources, University of Idaho, 1982
    Spehar R L, Anderson R L, Fiandt J T. Toxicity and bioaccumulation of cadmium and lead in aquatic invertebrates[J]. Environmental Pollution, 1978, 15(3):195-208
    Call D J, Brooke L T, Ahmad N, et al. Toxicity and metabolism studies with Environmental Protection Agency priority pollutants and related chemicals in freshwater organisms. EPA 600/3-83-095.[R]. Duluth:United States Environmental Protection Agency, 1983
    Gale N L, Wixson B G, Erten M. An evaluation of the acute toxicity of lead, zinc, and cadmium in Missouri Ozark groundwater[J]. Environmental Health, 1992, 25:169-183
    Offem B O, Ayotunde E O. Toxicity of lead to freshwater invertebrates (water fleas; Daphnia magna and Cyclop sp.) in fish ponds in a tropical floodplain[J]. Water, Air, and Soil Pollution, 2008, 192(1-4):39-46
    Mohammad S O, Nadzifah Y, Nur-Amalina R, et al. Toxicity of metals to a freshwater ostracod:Stenocypris major[J]. Journal of Toxicology and Environmental Health, Part A, 2011(3):136104
    Grande M, Andersen S. Lethal effects of hexavalent chromium, lead and nickel on young stages of Atlantic salmon (Salmo salar L.) in soft water[J]. Vatten, 1983, 39(4):405-416
    Saxena O P, Parashari A. Comparative study of the toxicity of six heavy metals to Channa punctatus[J]. Journal of Environmental Biology, 1983, 4:91-94
    Alsop D, Wood C M. Metal uptake and acute toxicity in zebrafish:Common mechanisms across multiple metals[J]. Aquatic Toxicology, 2011, 105(3-4):385-393
    潘天扬, 房树林, 闫玉莲, 等. 水体中铅对长江上游6种鱼类的急性中毒效应[J]. 淡水渔业, 2016, 46(3):34-39

    Pan T Y, Fang S L, Yan Y L, et al. Acute toxic effect of water-borne lead on six fishes from the upper reaches of the Yangtze River[J]. Freshwater Fisheries, 2016, 46(3):34-39(in Chinese)

    邓冬富. 水体中铅的浓度对胭脂鱼的生理生态学影响[D]. 重庆:西南大学, 2012:14-15 Deng D F. Ecophysiological effects of the water-borne lead (Pb) concentrations on Chinese sucker (Myxocyprinus asiaticus)[D]. Chongqing:Southwest University, 2012:14

    -15(in Chinese)

    彭涛. 水体中铅的浓度对南方鲇的生理生态学影响[D]. 重庆:西南大学, 2013:15-16 Peng T. Ecophysiological effects of the water-borne lead (Pb) concentrations on southern catfish (Silurus meridionalis)[D]. Chongqing:Southwest University, 2013:15

    -16(in Chinese)

    陈万光, 屈菊平, 邓平平, 等. Cu2+、Pb2+对高体鳑鮍幼鱼的急性毒性研究[J]. 江苏农业科学, 2010, 38(4):243-244
    Mebane C A, Dillon F S, Hennessy D P. Acute toxicity of cadmium, lead, zinc, and their mixtures to stream-resident fish and invertebrates[J]. Environmental Toxicology and Chemistry, 2012, 31(6):1334-1348
    Holcombe G W, Benoit D A, Leonard E N, et al. Long-term effects of lead exposure on three generations of brook trout (Salvelinus fontinalis)[J]. Journal of the Fisheries Research Board of Canada, 1976, 33(8):1731-1741
    Antunes P M C, Kreager N J. Lead toxicity to Lemna minor predicted using a metal speciation chemistry approach[J]. Environmental Toxicology and Chemistry, 2014, 33(10):2225-2233
    Tang Y, Garside E T. Preexposure and subsequent resistance to lead in yearling brook trout Salvelinus fontinalis[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1987, 44(5):1089-1091
    Spehar R L, Anderson R L, Fiandt J T. Toxicity and bioaccumulation of cadmium and lead in aquatic invertebrates[J]. Environmental Pollution, 1978, 15(3):195-208
    Davies P H, Goettl J P Jr, Sinley J R Jr, et al. Acute and chronic toxicity of lead to rainbow trout Salmo gairdneri, in hard and soft water[J]. Water Research, 1976, 10(3):199-206
    Enserink E L, Maas-Diepeveen J L, van Leeuwen C J. Combined effects of metals; an ecotoxicological evaluation[J]. Water Research, 1991, 25(6):679-687
    Munley K M, Brix K V, Panlilio J, et al. Growth inhibition in early life-stage tests predicts full life-cycle toxicity effects of lead in the freshwater pulmonate snail, Lymnaea stagnalis[J]. Aquatic Toxicology, 2013, 128-129:60-66
    Grosell M, Gerdes R M, Brix K V. Chronic toxicity of lead to three freshwater invertebrates-Brachionus calyciflorus, Chironomus tentans, and Lymnaea stagnalis[J]. Environmental Toxicology and Chemistry, 2006, 25(1):97-104
    Mebane C A, Hennessy D P, Dillon F S. Developing acute-to-chronic toxicity ratios for lead, cadmium, and zinc using rainbow trout, a mayfly, and a midge[J]. Water, Air, and Soil Pollution, 2007, 188(1-4):41-66
    Goettl J P, Davies P H, Sinley J R. Water pollution studies[J]. Colorado Fish Research Reviews, 1976, 11(5):68-75
    de Schamphelaere K A C, Nys C, Janssen C R. Toxicity of lead (Pb) to freshwater green algae:Development and validation of a bioavailability model and inter-species sensitivity comparison[J]. Aquatic Toxicology, 2014, 155:348-359
    Reader J P, Everall N C, Sayer M D J, et al. The effects of eight trace metals in acid soft water on survival, mineral uptake and skeletal calcium deposition in yolk-sac fry of brown trout, Salmo trutta L.[J]. Journal of Fish Biology, 1989, 35(2):187-198
    Besser J M, Brumbaugh W G, Brunson E L, et al. Acute and chronic toxicity of lead in water and diet to the amphipod Hyalella Azteca[J]. Environmental Toxicology and Chemistry, 2005, 24(7):1807
    Waykar B, Shinde S M. Assessment of the metal bioaccumulation in three species of freshwater bivalves[J]. Bulletin of Environmental Contamination and Toxicology, 2011, 87(3):267-271
    石慧, 冯承莲, 黄虹, 等. 铝对水生生物的毒性与硬度的相关关系探讨[J]. 生态毒理学报, 2016, 11(1):141-152

    Shi H, Feng C L, Huang H, et al. The correlation discussion between aluminum toxicity to aquatic organisms and water hardness[J]. Asian Journal of Ecotoxicology, 2016, 11(1):141-152(in Chinese)

    Pickering Q H, Henderson C. The acute toxicity of some heavy metals to different species of warmwater fishes[J]. Air & Water Pollution, 1966, 10(6):453-463
    United States Environmental Protection Agency (US EPA). Quality criteria for water. PB87-226759, EPA440/586-001.[S]. Springfield, Virginia:US EPA, 1986
    Organization for Economic Co-operation and Development (OECD). Report of the OECD Workshop on extrapolation of laboratory aquatic toxicity data to the real environment[R]. Paris:OECD, 1992
    Warne M. Derivation of the Australian and New Zealand water quality guidelines for toxicants[J]. Australasian Journal of Ecotoxicology, 2001, 7(2):123-136
    United States Environmental Protection Agency (US EPA). Aquatic life ambient water quality criteria cadmium. EPA-820-R-16-002.[R]. Washington DC:US EPA, 2016
  • 加载中
计量
  • 文章访问数:  1445
  • HTML全文浏览数:  1445
  • PDF下载数:  99
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-08-03
梁为纲, 牛琳, 王珺瑜, 王晓蕾, 吴爱明, 汪霞, 赵晓丽. 水体硬度对铅水质基准值的影响及校正方法探究[J]. 生态毒理学报, 2021, 16(4): 191-206. doi: 10.7524/AJE.1673-5897.20200803001
引用本文: 梁为纲, 牛琳, 王珺瑜, 王晓蕾, 吴爱明, 汪霞, 赵晓丽. 水体硬度对铅水质基准值的影响及校正方法探究[J]. 生态毒理学报, 2021, 16(4): 191-206. doi: 10.7524/AJE.1673-5897.20200803001
Liang Weigang, Niu Lin, Wang Junyu, Wang Xiaolei, Wu Aiming, Wang Xia, Zhao Xiaoli. Effect of Water Hardness on Water Quality Criteria of Lead and Correction Method[J]. Asian journal of ecotoxicology, 2021, 16(4): 191-206. doi: 10.7524/AJE.1673-5897.20200803001
Citation: Liang Weigang, Niu Lin, Wang Junyu, Wang Xiaolei, Wu Aiming, Wang Xia, Zhao Xiaoli. Effect of Water Hardness on Water Quality Criteria of Lead and Correction Method[J]. Asian journal of ecotoxicology, 2021, 16(4): 191-206. doi: 10.7524/AJE.1673-5897.20200803001

水体硬度对铅水质基准值的影响及校正方法探究

    通讯作者: 赵晓丽, E-mail: zhaoxiaoli_zxl@126.com
    作者简介: 梁为纲(1995-),男,硕士,研究方向为水质基准,E-mail:beikeliangweigang@163.com
  • 1. 中国环境科学研究院, 环境基准与风险评估国家重点实验室, 北京 100012;
  • 2. 北京师范大学水科学研究院, 北京 100875
基金项目:

国家自然科学基金重大项目(41991315)

摘要: 水体硬度对铅的水生生物毒性具有显著影响,但我国当前关于铅水质基准的研究中还缺乏针对硬度影响的关注。本文选用“集合斜率”和“标准斜率”2种典型的硬度校正法对搜集筛选后的毒性数据做校正处理,通过物种敏感度分布法推导铅的淡水水质基准。结果表明,在水体硬度为100 mg·L-1(以CaCO3计)水平下,2种校正法所得铅的短期水质基准分别为90.7 μg·L-1和89.8 μg·L-1,长期基准分别为2.7 μg·L-1和3.9 μg·L-1;在急性毒性数据充足条件下,2种校正法所得基准值极为相近;而在慢性数据量较少情况下,2种方法所获得的长期基准值在较高硬度水平下表现出明显差异,对比之下,“标准斜率”法为更优选择;与未校正硬度的结果比较发现,水体硬度参数会对铅的水质基准值产生显著影响。该结论对我国其他同类水溶态金属(如镍、镉和铬(Ⅲ)等)的水质基准研究具有一定借鉴意义。

English Abstract

参考文献 (76)

返回顶部

目录

/

返回文章
返回