戊唑醇低剂量暴露对大鼠胆汁酸合成的影响

张宇峰, 陶全, 徐雨静, 杨晔, 尹登科. 戊唑醇低剂量暴露对大鼠胆汁酸合成的影响[J]. 生态毒理学报, 2022, 17(5): 393-400. doi: 10.7524/AJE.1673-5897.20211026001
引用本文: 张宇峰, 陶全, 徐雨静, 杨晔, 尹登科. 戊唑醇低剂量暴露对大鼠胆汁酸合成的影响[J]. 生态毒理学报, 2022, 17(5): 393-400. doi: 10.7524/AJE.1673-5897.20211026001
Zhang Yufeng, Tao Quan, Xu Yujing, Yang Ye, Yin Dengke. Effects of Low-dose Exposure of Tebuconazole on Bile Acids Synthesis in Rats Model[J]. Asian journal of ecotoxicology, 2022, 17(5): 393-400. doi: 10.7524/AJE.1673-5897.20211026001
Citation: Zhang Yufeng, Tao Quan, Xu Yujing, Yang Ye, Yin Dengke. Effects of Low-dose Exposure of Tebuconazole on Bile Acids Synthesis in Rats Model[J]. Asian journal of ecotoxicology, 2022, 17(5): 393-400. doi: 10.7524/AJE.1673-5897.20211026001

戊唑醇低剂量暴露对大鼠胆汁酸合成的影响

    作者简介: 张宇峰(1998-),男,硕士,研究方向为生物药剂制剂新技术,E-mail:1793061047@qq.com
    通讯作者: 杨晔, E-mail: y.yang@ahtcm.edu.cn
  • 基金项目:

    国家自然科学基金面上项目(81874348);安徽省自然科学基金杰出青年项目(1908085J29)

  • 中图分类号: X171.5

Effects of Low-dose Exposure of Tebuconazole on Bile Acids Synthesis in Rats Model

    Corresponding author: Yang Ye, y.yang@ahtcm.edu.cn
  • Fund Project:
  • 摘要: 戊唑醇作为高效三唑类杀菌剂被广泛应用于农业生产,人类可能通过食物摄取、吸入或皮肤接触等多种途径摄入环境中残留的戊唑醇。每日允许摄入量(allowable daily intake,ADI)剂量下的戊唑醇暴露不会引起人体不良反应,但戊唑醇的作用靶点细胞色素P450酶(cytochrome P450,CYP450)不但是人体多种外源性物质代谢过程中的关键酶,同时还参与多种内源性物质的合成。本研究拟以人体与动物之间剂量换算系数100建立戊唑醇ADI剂量的大鼠口服、吸入与皮肤暴露模型,通过LC-MS/MS检测戊唑醇在组织中的分布状况,HE染色考察组织形态的变化,并用总胆汁酸试剂盒检测肝脏胆汁酸的含量,分析ADI剂量戊唑醇暴露是否影响机体的胆汁酸合成能力。结果表明,各暴露模型中的戊唑醇均主要在肝肾组织中蓄集,但皮肤暴露模型中各肠段也均有戊唑醇蓄积;口服与涂布模型组的肝组织胆汁酸与对照组相比呈下降趋势但无显著性差异,吸入模型组肝组织胆汁酸与对照组相比显著下降。推测不同暴露途径对机体的胆汁酸合成能力的影响差异可能与戊唑醇的分布差异相关。上述结果提示,戊唑醇的ADI剂量暴露可能与某些胆汁合成和代谢相关的疾病的发生关联密切。
  • 加载中
  • Nett J E, Andes D R. Antifungal agents:Spectrum of activity, pharmacology, and clinical indications[J]. Infectious Disease Clinics of North America, 2016, 30(1):51-83
    Cui N, Xu H Y, Yao S J, et al. Chiral triazole fungicide tebuconazole:Enantioselective bioaccumulation, bioactivity, acute toxicity, and dissipation in soils[J]. Environmental Science and Pollution Research International, 2018, 25(25):25468-25475
    Strickland T C, Potter T L, Joo H. Tebuconazole dissipation and metabolism in Tifton loamy sand during laboratory incubationt[J]. Pest Management Science, 2004, 60(7):703-709
    Podbielska M, Szpyrka E, Piechowicz B, et al. Behavior of fluopyram and tebuconazole and some selected pesticides in ripe apples and consumer exposure assessment in the applied crop protection framework[J]. Environmental Monitoring and Assessment, 2017, 189(7):350
    Camara M A, Barba A, Cermeño S, et al. Effect of processing on the disappearance of pesticide residues in fresh-cut lettuce:Bioavailability and dietary risk[J]. Journal of Environmental Science and Health, Part B, 2017, 52(12):880-886
    He H R, Gao F, Zhang Y H, et al. Effect of processing on the reduction of pesticide residues in a traditional Chinese medicine (TCM)[J]. Food Additives & Contaminants Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment, 2020, 37(7):1156-1164
    Liu N, Dong F S, Xu J, et al. Chiral bioaccumulation behavior of tebuconazole in the zebrafish (Danio rerio)[J]. Ecotoxicology and Environmental Safety, 2016, 126:78-84
    Manikandan P, Nagini S. Cytochrome P450 structure, function and clinical significance:A review[J]. Current Drug Targets, 2018, 19(1):38-54
    Zanger U M, Schwab M. Cytochrome P450 enzymes in drug metabolism:Regulation of gene expression, enzyme activities, and impact of genetic variation[J]. Pharmacology & Therapeutics, 2013, 138(1):103-141
    陈超, 李华军. 肠道菌群与胆汁酸的互作在相关疾病中的作用[J]. 中国微生态学杂志, 2018, 30(2):245-249

    Chen C, Li H J. The interaction of intestinal microbiota and bile acid in related diseases[J]. Chinese Journal of Microecology, 2018, 30(2):245-249(in Chinese)

    张柳, 牛尚梅, 马慧娟. 胆汁酸与代谢综合征的研究进展[J]. 医学综述, 2016, 22(5):964-967

    Zhang L, Niu S M, Ma H J. The progress of bile acids and metabolic syndrome[J]. Medical Recapitulate, 2016, 22(5):964-967(in Chinese)

    Marin J J G, Macias R I R, Briz O, et al. Bile acids in physiology, pathology and pharmacology[J]. Current Drug Metabolism, 2015, 17(1):4-29
    Sinha S R, Haileselassie Y, Nguyen L P, et al. Dysbiosis-induced secondary bile acid deficiency promotes intestinal inflammation[J]. Cell Host & Microbe, 2020, 27(4):659-670.e5
    Wang S N, Dong W X, Liu L, et al. Interplay between bile acids and the gut microbiota promotes intestinal carcinogenesis[J]. Molecular Carcinogenesis, 2019, 58(7):1155-1167
    Lu F C. Acceptable daily intake:Inception, evolution, and application[J]. Regulatory Toxicology and Pharmacology, 1988, 8(1):45-60
    Yang J D, Liu S H, Liao M H, et al. Effects of tebuconazole on cytochrome P450 enzymes, oxidative stress, and endocrine disruption in male rats[J]. Environmental Toxicology, 2018, 35(5):899-907
    Tamura K, Inoue K, Takahashi M, et al. Involvement of constitutive androstane receptor in liver hypertrophy and liver tumor development induced by triazole fungicides[J]. Food and Chemical Toxicology, 2015, 78:86-95
    Ferreira D, Motta A C D, Kreutz L C, et al. Assessment of oxidative stress in Rhamdia quelen exposed to agrichemicals[J]. Chemosphere, 2010, 79(9):914-921
    罗雪琪, 余洋, 来庆娜, 等. 液相色谱-串联质谱法研究氟噻草胺在大鼠体内组织中的分布行为[J]. 农药学学报, 2019, 21(4):506-513

    Luo X Q, Yu Y, Lai Q N, et al. Tissue distribution of flufenacet in rats determined by liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Pesticide Science, 2019, 21(4):506-513(in Chinese)

    Mathiyalagan S, Mandai B K. A review on assessment of acceptable daily intake for food additives[J]. Biointerface Research in Applied Chemistry, 2020, 10(4):6033-6038
    中华人民共和国卫生部, 中华人民共和国农业部. 食品中农药最大残留限量:GB 2763-2012[S]. 北京:中国标准出版社, 2013
    Othmène Y B, Hamdi H, Amara I, et al. Tebuconazole induced oxidative stress and histopathological alterations in adult rat heart[J]. Pesticide Biochemistry and Physiology, 2020, 170:104671
    杨秀鸿, 安飞云, 陆丹. 戊唑醇原药诱变性与亚慢性经口毒性的实验研究[J]. 实用预防医学, 2010, 17(10):2084-2087

    Yang X H, An F Y, Lu D. Experimental study on mutagenicity and subchronic toxicity by oral exposure of tebuconazole TC[J]. Practical Preventive Medicine, 2010, 17(10):2084-2087(in Chinese)

    吴迟, 刘新刚, 何明远, 等. 戊唑醇对斑马鱼的急性毒性及生物富集效应[J]. 生态毒理学报, 2017, 12(4):302-309

    Wu C, Liu X G, He M Y, et al. Acute toxicity and bio-concentration of tebuconazole in Brachydanio rerio[J]. Asian Journal of Ecotoxicology, 2017, 12(4):302-309(in Chinese)

    Chiang J Y L. Bile acids:Regulation of synthesis[J]. Journal of Lipid Research, 2009, 50(10):1955-1966
    Zhang Q Y, Li D, Wei P, et al. Structure-based rational screening of novel hit compounds with structural diversity for cytochrome P450 sterol 14α-demethylase from Penicillium digitatum[J]. Journal of Chemical Information and Modeling, 2010, 50(2):317-325
    Lv X, Pan L M, Wang J Y, et al. Effects of triazole fungicides on androgenic disruption and CYP3A4 enzyme activity[J]. Environmental Pollution, 2017, 222:504-512
    Robinson J F, Tonk E C M, Verhoef A, et al. Triazole induced concentration-related gene signatures in rat whole embryo culture[J]. Reproductive Toxicology, 2012, 34(2):275-283
    Ticho A L, Malhotra P, Dudeja P K, et al. Intestinal absorption of bile acids in health and disease[J]. Comprehensive Physiology, 2019, 10(1):21-56
    Sies H. Oxidative stress:A concept in redox biology and medicine[J]. Redox Biology, 2015, 4:180-183
    李洪柳, 申元英. 胆固醇胆结石形成机制的研究进展[J]. 中国公共卫生管理, 2020, 36(2):194-196

    Li H L, Shen Y Y. Advances in the mechanism of cholesterol gallstone formation[J]. Chinese Journal of Public Health Management, 2020, 36(2):194-196(in Chinese)

  • 加载中
计量
  • 文章访问数:  1889
  • HTML全文浏览数:  1889
  • PDF下载数:  65
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-10-26
张宇峰, 陶全, 徐雨静, 杨晔, 尹登科. 戊唑醇低剂量暴露对大鼠胆汁酸合成的影响[J]. 生态毒理学报, 2022, 17(5): 393-400. doi: 10.7524/AJE.1673-5897.20211026001
引用本文: 张宇峰, 陶全, 徐雨静, 杨晔, 尹登科. 戊唑醇低剂量暴露对大鼠胆汁酸合成的影响[J]. 生态毒理学报, 2022, 17(5): 393-400. doi: 10.7524/AJE.1673-5897.20211026001
Zhang Yufeng, Tao Quan, Xu Yujing, Yang Ye, Yin Dengke. Effects of Low-dose Exposure of Tebuconazole on Bile Acids Synthesis in Rats Model[J]. Asian journal of ecotoxicology, 2022, 17(5): 393-400. doi: 10.7524/AJE.1673-5897.20211026001
Citation: Zhang Yufeng, Tao Quan, Xu Yujing, Yang Ye, Yin Dengke. Effects of Low-dose Exposure of Tebuconazole on Bile Acids Synthesis in Rats Model[J]. Asian journal of ecotoxicology, 2022, 17(5): 393-400. doi: 10.7524/AJE.1673-5897.20211026001

戊唑醇低剂量暴露对大鼠胆汁酸合成的影响

    通讯作者: 杨晔, E-mail: y.yang@ahtcm.edu.cn
    作者简介: 张宇峰(1998-),男,硕士,研究方向为生物药剂制剂新技术,E-mail:1793061047@qq.com
  • 1. 安徽中医药大学药学院, 合肥 230012;
  • 2. 药物制剂技术与应用安徽省重点实验室, 合肥 230012;
  • 3. 新安医学教育部重点实验室, 合肥 230012
基金项目:

国家自然科学基金面上项目(81874348);安徽省自然科学基金杰出青年项目(1908085J29)

摘要: 戊唑醇作为高效三唑类杀菌剂被广泛应用于农业生产,人类可能通过食物摄取、吸入或皮肤接触等多种途径摄入环境中残留的戊唑醇。每日允许摄入量(allowable daily intake,ADI)剂量下的戊唑醇暴露不会引起人体不良反应,但戊唑醇的作用靶点细胞色素P450酶(cytochrome P450,CYP450)不但是人体多种外源性物质代谢过程中的关键酶,同时还参与多种内源性物质的合成。本研究拟以人体与动物之间剂量换算系数100建立戊唑醇ADI剂量的大鼠口服、吸入与皮肤暴露模型,通过LC-MS/MS检测戊唑醇在组织中的分布状况,HE染色考察组织形态的变化,并用总胆汁酸试剂盒检测肝脏胆汁酸的含量,分析ADI剂量戊唑醇暴露是否影响机体的胆汁酸合成能力。结果表明,各暴露模型中的戊唑醇均主要在肝肾组织中蓄集,但皮肤暴露模型中各肠段也均有戊唑醇蓄积;口服与涂布模型组的肝组织胆汁酸与对照组相比呈下降趋势但无显著性差异,吸入模型组肝组织胆汁酸与对照组相比显著下降。推测不同暴露途径对机体的胆汁酸合成能力的影响差异可能与戊唑醇的分布差异相关。上述结果提示,戊唑醇的ADI剂量暴露可能与某些胆汁合成和代谢相关的疾病的发生关联密切。

English Abstract

参考文献 (31)

返回顶部

目录

/

返回文章
返回