戊唑醇低剂量暴露对大鼠胆汁酸合成的影响
Effects of Low-dose Exposure of Tebuconazole on Bile Acids Synthesis in Rats Model
-
摘要: 戊唑醇作为高效三唑类杀菌剂被广泛应用于农业生产,人类可能通过食物摄取、吸入或皮肤接触等多种途径摄入环境中残留的戊唑醇。每日允许摄入量(allowable daily intake,ADI)剂量下的戊唑醇暴露不会引起人体不良反应,但戊唑醇的作用靶点细胞色素P450酶(cytochrome P450,CYP450)不但是人体多种外源性物质代谢过程中的关键酶,同时还参与多种内源性物质的合成。本研究拟以人体与动物之间剂量换算系数100建立戊唑醇ADI剂量的大鼠口服、吸入与皮肤暴露模型,通过LC-MS/MS检测戊唑醇在组织中的分布状况,HE染色考察组织形态的变化,并用总胆汁酸试剂盒检测肝脏胆汁酸的含量,分析ADI剂量戊唑醇暴露是否影响机体的胆汁酸合成能力。结果表明,各暴露模型中的戊唑醇均主要在肝肾组织中蓄集,但皮肤暴露模型中各肠段也均有戊唑醇蓄积;口服与涂布模型组的肝组织胆汁酸与对照组相比呈下降趋势但无显著性差异,吸入模型组肝组织胆汁酸与对照组相比显著下降。推测不同暴露途径对机体的胆汁酸合成能力的影响差异可能与戊唑醇的分布差异相关。上述结果提示,戊唑醇的ADI剂量暴露可能与某些胆汁合成和代谢相关的疾病的发生关联密切。Abstract: Tebuconazole, a high-efficiency triazole, is widely used in agriculture and its environmental residue is easily to be uptaken by human beings through dietary ingestion, inhalation, and skin contact. Acceptable daily intake (ADI) is a term referring to the no health-damaging amount of a substance, even under a daily-persistent exposure. Tebuconazole is an active inhibitor of cytochrome P450 (CYP450) enzymes, which are the key enzymes for the synthesis of various endogenous materials. In order to analysis the influence of ADI dose tebuconazole on bile acid synthesis, this study established a series of tebuconazole exposure rat model through ingestion, inhalation and skin contact, with a conversion factor of 100 between human being and rat, detected the tebuconazole distribution in main tissues by using LC-MS/MS, observed the morphology characteristics of tissues by HE staining, and measured the bile acid content in liver by using the total bile acid kit. The results showed that, tebuconazole was mainly accumulated in liver and kidney tissues in all the exposure models, and accumulated in all segments of intestine in the skin exposure model; the tebuconazole exposure through ingestion and skin contact led a slight decline on total bile acid contents in liver, and the inhalation model exhibited significantly decreased total bile acid content in liver than that of the control group. We presumed that the differentiated influences of tebuconazole exposure on bile acid synthesis should be related with the different tebuconazole distribution in tissues in different exposure models. These results revealed that the ADI dose tebuconazole exposure might be associated with the occurrence and development of some bile acid synthesis- and metabolism-related diseases.
-
Key words:
- tebuconazole /
- rat /
- chronic toxicity /
- bile acids synthesis /
- long-term and low-dose exposure
-
-
Nett J E, Andes D R. Antifungal agents:Spectrum of activity, pharmacology, and clinical indications[J]. Infectious Disease Clinics of North America, 2016, 30(1):51-83 Cui N, Xu H Y, Yao S J, et al. Chiral triazole fungicide tebuconazole:Enantioselective bioaccumulation, bioactivity, acute toxicity, and dissipation in soils[J]. Environmental Science and Pollution Research International, 2018, 25(25):25468-25475 Strickland T C, Potter T L, Joo H. Tebuconazole dissipation and metabolism in Tifton loamy sand during laboratory incubationt[J]. Pest Management Science, 2004, 60(7):703-709 Podbielska M, Szpyrka E, Piechowicz B, et al. Behavior of fluopyram and tebuconazole and some selected pesticides in ripe apples and consumer exposure assessment in the applied crop protection framework[J]. Environmental Monitoring and Assessment, 2017, 189(7):350 Camara M A, Barba A, Cermeño S, et al. Effect of processing on the disappearance of pesticide residues in fresh-cut lettuce:Bioavailability and dietary risk[J]. Journal of Environmental Science and Health, Part B, 2017, 52(12):880-886 He H R, Gao F, Zhang Y H, et al. Effect of processing on the reduction of pesticide residues in a traditional Chinese medicine (TCM)[J]. Food Additives & Contaminants Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment, 2020, 37(7):1156-1164 Liu N, Dong F S, Xu J, et al. Chiral bioaccumulation behavior of tebuconazole in the zebrafish (Danio rerio)[J]. Ecotoxicology and Environmental Safety, 2016, 126:78-84 Manikandan P, Nagini S. Cytochrome P450 structure, function and clinical significance:A review[J]. Current Drug Targets, 2018, 19(1):38-54 Zanger U M, Schwab M. Cytochrome P450 enzymes in drug metabolism:Regulation of gene expression, enzyme activities, and impact of genetic variation[J]. Pharmacology & Therapeutics, 2013, 138(1):103-141 陈超, 李华军. 肠道菌群与胆汁酸的互作在相关疾病中的作用[J]. 中国微生态学杂志, 2018, 30(2):245-249 Chen C, Li H J. The interaction of intestinal microbiota and bile acid in related diseases[J]. Chinese Journal of Microecology, 2018, 30(2):245-249(in Chinese)
张柳, 牛尚梅, 马慧娟. 胆汁酸与代谢综合征的研究进展[J]. 医学综述, 2016, 22(5):964-967 Zhang L, Niu S M, Ma H J. The progress of bile acids and metabolic syndrome[J]. Medical Recapitulate, 2016, 22(5):964-967(in Chinese)
Marin J J G, Macias R I R, Briz O, et al. Bile acids in physiology, pathology and pharmacology[J]. Current Drug Metabolism, 2015, 17(1):4-29 Sinha S R, Haileselassie Y, Nguyen L P, et al. Dysbiosis-induced secondary bile acid deficiency promotes intestinal inflammation[J]. Cell Host & Microbe, 2020, 27(4):659-670.e5 Wang S N, Dong W X, Liu L, et al. Interplay between bile acids and the gut microbiota promotes intestinal carcinogenesis[J]. Molecular Carcinogenesis, 2019, 58(7):1155-1167 Lu F C. Acceptable daily intake:Inception, evolution, and application[J]. Regulatory Toxicology and Pharmacology, 1988, 8(1):45-60 Yang J D, Liu S H, Liao M H, et al. Effects of tebuconazole on cytochrome P450 enzymes, oxidative stress, and endocrine disruption in male rats[J]. Environmental Toxicology, 2018, 35(5):899-907 Tamura K, Inoue K, Takahashi M, et al. Involvement of constitutive androstane receptor in liver hypertrophy and liver tumor development induced by triazole fungicides[J]. Food and Chemical Toxicology, 2015, 78:86-95 Ferreira D, Motta A C D, Kreutz L C, et al. Assessment of oxidative stress in Rhamdia quelen exposed to agrichemicals[J]. Chemosphere, 2010, 79(9):914-921 罗雪琪, 余洋, 来庆娜, 等. 液相色谱-串联质谱法研究氟噻草胺在大鼠体内组织中的分布行为[J]. 农药学学报, 2019, 21(4):506-513 Luo X Q, Yu Y, Lai Q N, et al. Tissue distribution of flufenacet in rats determined by liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Pesticide Science, 2019, 21(4):506-513(in Chinese)
Mathiyalagan S, Mandai B K. A review on assessment of acceptable daily intake for food additives[J]. Biointerface Research in Applied Chemistry, 2020, 10(4):6033-6038 中华人民共和国卫生部, 中华人民共和国农业部. 食品中农药最大残留限量:GB 2763-2012[S]. 北京:中国标准出版社, 2013 Othmène Y B, Hamdi H, Amara I, et al. Tebuconazole induced oxidative stress and histopathological alterations in adult rat heart[J]. Pesticide Biochemistry and Physiology, 2020, 170:104671 杨秀鸿, 安飞云, 陆丹. 戊唑醇原药诱变性与亚慢性经口毒性的实验研究[J]. 实用预防医学, 2010, 17(10):2084-2087 Yang X H, An F Y, Lu D. Experimental study on mutagenicity and subchronic toxicity by oral exposure of tebuconazole TC[J]. Practical Preventive Medicine, 2010, 17(10):2084-2087(in Chinese)
吴迟, 刘新刚, 何明远, 等. 戊唑醇对斑马鱼的急性毒性及生物富集效应[J]. 生态毒理学报, 2017, 12(4):302-309 Wu C, Liu X G, He M Y, et al. Acute toxicity and bio-concentration of tebuconazole in Brachydanio rerio[J]. Asian Journal of Ecotoxicology, 2017, 12(4):302-309(in Chinese)
Chiang J Y L. Bile acids:Regulation of synthesis[J]. Journal of Lipid Research, 2009, 50(10):1955-1966 Zhang Q Y, Li D, Wei P, et al. Structure-based rational screening of novel hit compounds with structural diversity for cytochrome P450 sterol 14α-demethylase from Penicillium digitatum[J]. Journal of Chemical Information and Modeling, 2010, 50(2):317-325 Lv X, Pan L M, Wang J Y, et al. Effects of triazole fungicides on androgenic disruption and CYP3A4 enzyme activity[J]. Environmental Pollution, 2017, 222:504-512 Robinson J F, Tonk E C M, Verhoef A, et al. Triazole induced concentration-related gene signatures in rat whole embryo culture[J]. Reproductive Toxicology, 2012, 34(2):275-283 Ticho A L, Malhotra P, Dudeja P K, et al. Intestinal absorption of bile acids in health and disease[J]. Comprehensive Physiology, 2019, 10(1):21-56 Sies H. Oxidative stress:A concept in redox biology and medicine[J]. Redox Biology, 2015, 4:180-183 李洪柳, 申元英. 胆固醇胆结石形成机制的研究进展[J]. 中国公共卫生管理, 2020, 36(2):194-196 Li H L, Shen Y Y. Advances in the mechanism of cholesterol gallstone formation[J]. Chinese Journal of Public Health Management, 2020, 36(2):194-196(in Chinese)
-

计量
- 文章访问数: 1889
- HTML全文浏览数: 1889
- PDF下载数: 65
- 施引文献: 0