鄱阳湖流域天然劣质地下水中锰富集特征及其健康风险评估
Enrichment of Manganese in Natural Inferior Groundwater and Its Health Risk Assessment in Poyang Lake Basin
-
摘要: 为对鄱阳湖流域的天然劣质地下水进行锰富集研究,对在该流域收集的243组地下水监测数据,应用水文地球化学方法和地理信息系统,分析了地下水中锰的分布特征及富集原理,并结合美国环境保护局(United States Environmental Protection Agency, US EPA)的非致癌健康风险评价模型进行了地下水中锰的健康风险评估。结果表明:(1)研究区地下水类型主要为HCO3-Ca型和Cl-Ca·Mg型;(2)约有38.2%的区域地下水中锰浓度为0.1~0.4 mg·L-1,34.7%的区域锰浓度>0.4 mg·L-1;高浓度锰在山地丘陵和平原区域均有分布,分别受到氧化还原环境控制;(3)鄱阳湖流域范围内高锰地下水分布较为广泛,但对所有成人和绝大部分儿童均不存在非致癌风险,绝大部分区域无需进行额外管控。该研究结果可为鄱阳湖流域的水源地选取和保护提供依据。Abstract: In order to discuss the enrichment of manganese in the natural inferior groundwater of the Poyang Lake Basin, 243 sets of local groundwater data were collected. The distribution characteristics and enrichment mechanisms of manganese in groundwater were studied by using the hydrogeochemical method and geographic information system (GIS). Moreover, the health risk of manganese in groundwater was assessed according to US EPA non-carcinogenic health risk assessment model. The results show that the groundwater type with elevated manganese is dominated by HCO3-Ca and Cl-Ca·Mg. Groundwater in about 38.2% of the region area presents a manganese concentration of 0.1~0.4 mg·L-1, and 34.7% of the regional manganese concentration is greater than 0.4 mg·L-1. Higher concentrations of manganese in groundwater are found widely in both mountainous and hilly areas and plains controlled by the redox conditions, but there is no non-carcinogenic risk for all adults and most children. Therefore, there is no additional control to be required in most areas. These results provide a basis for the selection and protection of water sources in the studied area.
-
Key words:
- manganese /
- groundwater /
- enrichment /
- health risk assessment /
- Poyang Lake Basin
-
-
Ravindra K, Mor S. Distribution and health risk assessment of arsenic and selected heavy metals in Groundwater of Chandigarh, India [J]. Environmental Pollution, 2019, 250: 820-830 Wang Y X, Zheng C M, Ma R. Review: Safe and sustainable groundwater supply in China [J]. Hydrogeology Journal, 2018, 26(5): 1301-1324 Wang Y X, Li J X, Ma T, et al. Genesis of geogenic contaminated groundwater: As, F and I [J]. Critical Reviews in Environmental Science and Technology, 2021, 51(24): 2895-2933 Mahapatra S R, Venugopal T, Shanmugasundaram A, et al. Heavy metal index and geographical information system (GIS) approach to study heavy metal contamination: A case study of North Chennai groundwater [J]. Applied Water Science, 2020, 10(12): 1-17 Kousa A, Komulainen H, Hatakka T, et al. Variation in groundwater manganese in Finland [J]. Environmental Geochemistry and Health, 2021, 43(3): 1193-1211 Demlie M, Hingston E, Mnisi Z. A study of the sources, human health implications and low cost treatment options of iron rich groundwater in the northeastern coastal areas of KwaZulu-Natal, South Africa [J]. Journal of Geochemical Exploration, 2014, 144: 504-510 Carretero S, Kruse E.Iron and manganese content in groundwater on the northeastern coast of the Buenos Aires Province, Argentina [J]. Environmental Earth Sciences, 2015, 73(5): 1983-1995 Bondu R, Cloutier V, Rosa E, et al. An exploratory data analysis approach for assessing the sources and distribution of naturally occurring contaminants (F, Ba, Mn, As) in groundwater from southern Quebec (Canada) [J]. Applied Geochemistry, 2020, 114: 104500 Mosley L M, Fitzpatrick R W, Palmer D, et al. Changes in acidity and metal geochemistry in soils, groundwater, drain and river water in the Lower Murray River after a severe drought [J]. The Science of the Total Environment, 2014, 485-486: 281-291 世界卫生组织. 上海市供水调度监测中心,上海交通大学译. 饮用水水质准则[M]. 上海: 上海交通大学出版社, 2014: 297 Powers K M, Smith-Weller T, Franklin G M, et al. Parkinson’s disease risks associated with dietary iron, manganese, and other nutrient intakes [J]. Neurology, 2003, 60(11): 1761-1766 Spangler J G, Reid J C. Environmental manganese and cancer mortality rates by County in North Carolina: An ecological study [J]. Biological Trace Element Research, 2010, 133(2): 128-135 黄长生, 周耘, 张胜男, 等. 长江流域地下水资源特征与开发利用现状[J]. 中国地质, 2021, 48(4): 979-1000 Huang C S, Zhou Y, Zhang S N, et al. Groundwater resources in the Yangtze River Basin and its current development and utilization [J]. Geology in China, 2021, 48(4): 979-1000 (in Chinese)
中华人民共和国卫生部, 中国国家标准化管理委员会. 生活饮用水卫生标准: GB 5749—2006[S]. 北京: 中国标准出版社, 2007 李鸣. 鄱阳湖重金属污染特征研究及环境容量估算[D]. 南昌: 南昌大学, 2010: 137-140 Li M. Heavy metal pollution characteristics and environmental capacity estimate of Poyang Lake [D]. Nanchang: Nanchang University, 2010: 137 -140 (in Chinese)
Liao F, Wang G C, Shi Z M, et al. Distributions, sources, and species of heavy metals/trace elements in shallow groundwater around the Poyang Lake, East China [J]. Exposure and Health, 2018, 10(4): 211-227 曾昭华. 长江中下游地区地下水中铁锰元素的形成及其分布规律[J]. 长江流域资源与环境, 1994, 3(4): 72-77 Zeng Z H. The formation and distribution of Fe and Mn elements in the groundwater in the lower-middle reaches area of the Yangtze River [J]. Resources and Environment in the Yangtze Valley, 1994, 3(4): 72-77 (in Chinese)
He X D, Wu J H, He S. Hydrochemical characteristics and quality evaluation of groundwater in terms of health risks in Luohe aquifer in Wuqi County of the Chinese Loess Plateau, northwest China [J]. Human and Ecological Risk Assessment: An International Journal, 2019, 25(1-2): 32-51 United States Environmental Protection Agency (US EPA). Electronic Code of Federal Regulations, Title 40- Protection of environment, Part 423D steam electric power generating point source category. Appendix A to Part 423E 126, priority pollutants [R]. Washington DC: US EPA, 2013 Soldatova E, Sun Z X, Maier S, et al. Shallow groundwater quality and associated non-cancer health risk in agricultural areas (Poyang Lake Basin, China) [J]. Environmental Geochemistry and Health, 2018, 40(5): 2223-2242 中华人民共和国生态环境部. 建设用地土壤污染风险评估技术导则: HJ 25.3—2019 [S]. 北京: 中华人民共和国生态环境部, 2019 曾昭华, 蔡伟娣, 张志良. 地下水中锰元素的迁移富集及其控制因素[J]. 资源环境与工程, 2004, 18(4): 39-42 Zeng Z H, Cai W D, Zhang Z L. The migration enrichment of Mn element in groundwater and the controlling factor [J]. Hubei Geology & Mineral Resources, 2004, 18(4): 39-42 (in Chinese)
曾昭华. 长江中下游地区地下水中Mn元素的背景特征及其形成[J]. 上海地质, 2004, 25(1): 9-12 Zeng Z H. The background characteristics and formation of Mn element of groundwater in the area of the middle and lower reaches of the Yangtze River [J]. Shanghai Geology, 2004, 25(1): 9-12 (in Chinese)
吕晓立, 刘景涛, 朱亮, 等. 兰州市地下水中铁锰分布特征及成因[J]. 干旱区资源与环境, 2019, 33(3): 130-136 Lv X L, Liu J T, Zhu L, et al. Distribution and source of Fe and Mn in groundwater of Lanzhou City [J]. Journal of Arid Land Resources and Environment, 2019, 33(3): 130-136 (in Chinese)
曾昭华, 丁汉文, 多超美, 等. 江西省鄱阳湖地区地下水环境背景的形成[J]. 水文地质工程地质, 1990, 17(4): 36-39 , 45 Zeng Z H, Ding H W, Duo C M, et al. The formation of groundwater environment in the area of Poyang Lake, Jiangxi Province [J]. Hydrogeology and Engineering Geology, 1990, 17(4): 36-39, 45 (in Chinese)
雷万荣, 唐春梅, 江凌云. 浅谈地下水中铁、锰质的迁移与富集规律[J]. 江西科学, 2006, 24(1): 80-82 Lei W R, Tang C M, Jiang L Y. Discussion on iron and manganese transport and concentrate in underground water [J]. Jiangxi Science, 2006, 24(1): 80-82 (in Chinese)
梁国玲, 孙继朝, 黄冠星, 等. 珠江三角洲地区地下水锰的分布特征及其成因[J]. 中国地质, 2009, 36(4): 899-906 Liang G L, Sun J C, Huang G X, et al. Origin and distribution characteristics of manganese in groundwater of the Zhujiang River Delta [J]. Geology in China, 2009, 36(4): 899-906 (in Chinese)
-

计量
- 文章访问数: 1141
- HTML全文浏览数: 1141
- PDF下载数: 100
- 施引文献: 0