麻醉剂依托咪酯诱导斑马鱼幼鱼神经发育毒性

马栋栋, 李思颖, 张金阁, 卢志杰, 龙小冰, 黄争, 黄楚舒, 刘昕, 史文俊, 应光国. 麻醉剂依托咪酯诱导斑马鱼幼鱼神经发育毒性[J]. 生态毒理学报, 2024, 19(1): 40-53. doi: 10.7524/AJE.1673-5897.20230928002
引用本文: 马栋栋, 李思颖, 张金阁, 卢志杰, 龙小冰, 黄争, 黄楚舒, 刘昕, 史文俊, 应光国. 麻醉剂依托咪酯诱导斑马鱼幼鱼神经发育毒性[J]. 生态毒理学报, 2024, 19(1): 40-53. doi: 10.7524/AJE.1673-5897.20230928002
Ma Dongdong, Li Siying, Zhang Jinge, Lu Zhijie, Long Xiaobing, Huang Zheng, Huang Chushu, Liu Xin, Shi Wenjun, Ying Guangguo. Developmental Neurotoxicity of Anesthetic Etomidate on Zebrafish Larvae[J]. Asian journal of ecotoxicology, 2024, 19(1): 40-53. doi: 10.7524/AJE.1673-5897.20230928002
Citation: Ma Dongdong, Li Siying, Zhang Jinge, Lu Zhijie, Long Xiaobing, Huang Zheng, Huang Chushu, Liu Xin, Shi Wenjun, Ying Guangguo. Developmental Neurotoxicity of Anesthetic Etomidate on Zebrafish Larvae[J]. Asian journal of ecotoxicology, 2024, 19(1): 40-53. doi: 10.7524/AJE.1673-5897.20230928002

麻醉剂依托咪酯诱导斑马鱼幼鱼神经发育毒性

    作者简介: 马栋栋(1991-),男,博士研究生,研究方向为生态毒理学,E-mail:dongdong.ma@m.scnu.edu.cn
    通讯作者: 刘昕,E-mail: 87541944@qq.com;  史文俊,E-mail: wenjun.shi@m.scnu.edu.cn; 
  • 基金项目:

    国家自然科学基金资助项目(42277268);广东省精神活性物质监测与安全重点实验室研究基金项目(2020B22101007)

  • 中图分类号: X171.5

Developmental Neurotoxicity of Anesthetic Etomidate on Zebrafish Larvae

    Corresponding authors: Liu Xin ;  Shi Wenjun ; 
  • Fund Project:
  • 摘要: 依托咪酯(etomidate, ET)在临床上常被用作麻醉剂。ET长期高剂量地使用会导致人类意识下降和认知障碍等负面效应。但ET对鱼类的神经毒性机制尚不清楚。在本文中,2 hpf (hours post-fertilization)的斑马鱼胚胎暴露于不同浓度ET (0.010、0.091、0.501、9.400、84.31和664.4 μg·L-1)至168 hpf。通过分析ET对斑马鱼胚胎生理发育、早期行为、细胞凋亡以及多巴胺(dopamine, DA)和γ氨基丁酸(gamma aminobutyric acid, GABA)通路相关基因转录表达水平的影响,评估其对斑马鱼幼鱼神经发育毒性。结果表明,664.4 μg·L-1 ET显著增大48 hpf和60 hpf斑马鱼胚胎孵化率。0.091 μg·L-1和0.501 μg·L-1 ET诱导168 hpf幼鱼体长减少。0.010、0.091、0.501、9.400、84.31和664.4 μg·L-1 ET增大48 hpf胚胎畸形评分。0.501、9.400、84.31和664.4 μg·L-1 ET暴露显著增大96 hpf胚胎畸形评分。0.501、9.400和664.4 μg·L-1 ET显著增大168 hpf胚胎畸形评分。0.010 μg·L-1 ET促进了大脑细胞凋亡,而664.4 μg·L-1 ET抑制了大脑细胞凋亡。行为分析显示,ET所有浓度均抑制触碰行为。0.091 μg·L-1 ET增强幼鱼游泳行为,而664.4 μg·L-1 ET减弱游泳行为。并且ET以浓度依赖的方式导致焦虑行为增加。qPCR分析结果表明,低浓度ET显著上调了DA和GABA通路相关基因的转录表达水平,而高浓度ET显著抑制了这些基因的转录表达水平。这些结果表明,ET对发育早期斑马鱼具有明显的神经发育毒性。
  • 加载中
  • Beckman E J, Buck M L, Manasco K B. Analgesia and Sedation in Hospitalized Children[M]// PedSAP Book 3: Sedation and Analgesia. Pkwy Lenexa, KS: American College of Clinical Pharmacy, 2017: 7-30
    Collymore C. Anesthesia, Analgesia, and Euthanasia of the Laboratory Zebrafish[M]//The Zebrafish in Biomedical Research. Amsterdam: Elsevier, 2020: 403-413
    国家药品监督管理总局, 中华人民共和国公安部, 中华人民共和国国家卫生健康委员会. 精神药品目录[R]. 北京: 国家药品监督管理总局, 中华人民共和国公安部, 中华人民共和国国家卫生健康委员会, 2023
    Wagner C E, Bick J S, Johnson D, et al. Etomidate use and postoperative outcomes among cardiac surgery patients[J]. Anesthesiology, 2014, 120(3): 579-589
    McIntosh M P, Rajewski R A. A simple and efficient high-performance liquid chromatographic assay for etomidate in plasma[J]. Journal of Pharmaceutical and Biomedical Analysis, 2001, 24(4): 689-694
    Su F, El-Komy M H, Hammer G B, et al. Population pharmacokinetics of etomidate in neonates and infants with congenital heart disease[J]. Biopharmaceutics & Drug Disposition, 2015, 36(2): 104-114
    Dörr H G, Kuhnle U, Holthausen H, et al. Etomidate: A selective adrenocortical 11 beta-hydroxylase inhibitor[J]. Klinische Wochenschrift, 1984, 62(21): 1011-1013
    Liu Y T, Liu W, Wang X Q, et al. Hippocampal astrocyte dysfunction contributes to etomidate-induced long-lasting synaptic inhibition[J]. Biochemical and Biophysical Research Communications, 2019, 519(4): 803-811
    Bruder E A, Ball I M, Ridi S, et al. Single induction dose of etomidate versus other induction agents for endotracheal intubation in critically ill patients[J]. The Cochrane Database of Systematic Reviews, 2015, 1(1): CD010225
    Supreme Prosecutors' Office. A drug- crime white paper[R]. Seoul, Republic of Korea: Supreme Prosecutors' Office, 2017: 4
    Jung Y K, You S Y, Kim S Y, et al. Simultaneous determination of etomidate and its major metabolite, etomidate acid, in urine using dilute and shoot liquid chromatography-tandem mass spectrometry[J]. Molecules, 2019, 24(24): 4459
    United States Environmental Protection Agency (US EPA). Health effects test guidelines OPPTS 870.6300 Developmental neurotoxicity study[R]. Washington DC: US EPA, 1998
    Mileson B E, Ferenc S A. Methods to identify and characterize developmental neurotoxicity for human health risk assessment: Overview[J]. Environmental Health Perspectives, 2001, 109(Suppl.1): 77-78
    Chen X P, Dong Q X, Chen Y H, et al. Effects of Dechlorane Plus exposure on axonal growth, musculature and motor behavior in embryo-larval zebrafish[J]. Environmental Pollution, 2017, 224: 7-15
    Jin Y X, Zhu Z H, Wang Y Y, et al. The fungicide imazalil induces developmental abnormalities and alters locomotor activity during early developmental stages in zebrafish[J]. Chemosphere, 2016, 153: 455-461
    Altenhofen S, Nabinger D D, Wiprich M T, et al. Tebuconazole alters morphological, behavioral and neurochemical parameters in larvae and adult zebrafish (Danio rerio)[J]. Chemosphere, 2017, 180: 483-490
    Liang X F, Zhao Y Q, Liu W, et al. Butylated hydroxytoluene induces hyperactivity and alters dopamine-related gene expression in larval zebrafish (Danio rerio)[J]. Environmental Pollution, 2020, 257: 113624
    Du W J, Zhang R W, Li J, et al. The locus coeruleus modulates intravenous general anesthesia of zebrafish via a cooperative mechanism[J]. Cell Reports, 2018, 24(12): 3146-3155.e3
    Broening H W, La Du J, Carr G J, et al. Determination of narcotic potency using a neurobehavioral assay with larval zebrafish[J]. NeuroToxicology, 2019, 74: 67-73
    Pejo E, Santer P, Jeffrey S, et al. Analogues of etomidate: Modifications around etomidate's chiral carbon and the impact on in vitro and in vivo pharmacology[J]. Anesthesiology, 2014, 121(2): 290-301
    McGrath M, Hofmann A, Raines D E. Behavioral and steroidogenic pharmacology of phenyl ring substituted etomidate analogs in rats[J]. BMC Pharmacology & Toxicology, 2019, 20(1): 48
    Diaz-Gil D, Mueller N, Moreno-Duarte I, et al. Etomidate and ketamine: Residual motor and adrenal dysfunction that persist beyond recovery from loss of righting reflex in rats[J]. Pharmaceuticals, 2014, 8(1): 21-37
    Linsenbardt D N, Boehm S L. Ethanol-induced locomotor sensitization in DBA/2J mice is associated with alterations in GABAA subunit gene expression and behavioral sensitivity to GABAA acting drugs[J]. Pharmacology Biochemistry and Behavior, 2010, 95(3): 359-366
    Nuss P. Anxiety disorders and GABA neurotransmission: A disturbance of modulation[J]. Neuropsychiatric Disease and Treatment, 2015, 11: 165-175
    Klein M O, Battagello D S, Cardoso A R, et al. Dopamine: Functions, signaling, and association with neurological diseases[J]. Cellular and Molecular Neurobiology, 2019, 39(1): 31-59
    Tran S, Facciol A, Nowicki M, et al. Acute alcohol exposure increases tyrosine hydroxylase protein expression and dopamine synthesis in zebrafish[J]. Behavioural Brain Research, 2017, 317: 237-241
    Clayman C L, Connaughton V P. Neurochemical and behavioral consequences of ethanol and/or caffeine exposure: Effects in zebrafish and rodents[J]. Current Neuropharmacology, 2022, 20(3): 560-578
    Tran S, Nowicki M, Muraleetharan A, et al. Differential effects of acute administration of SCH-23390, a D1 receptor antagonist, and of ethanol on swimming activity, anxiety-related responses, and neurochemistry of zebrafish[J]. Psychopharmacology, 2015, 232(20): 3709-3718
    Assad N, Luz W L, Santos-Silva M, et al. Acute restraint stress evokes anxiety-like behavior mediated by telencephalic inactivation and GabAergic dysfunction in zebrafish brains[J]. Scientific Reports, 2020, 10(1): 5551
    Mantz J, Lecharny J B, Laudenbach V, et al. Anesthetics affect the uptake but not the depolarization-evoked release of GABA in rat striatal synaptosomes[J]. Anesthesiology, 1995, 82(2): 502-511
    Koorn R, Brannan T S, Martinez-Tica J, et al. Effect of etomidate on in vivo ischemia-induced dopamine release in the corpus striatum of the rat: A study using cerebral microdialysis[J]. Anesthesia and Analgesia, 1994, 78(1): 73-79
    Lesser J B, Koorn R, Vloka J D, et al. The interaction of temperature with thiopental and etomidate on extracellular dopamine and glutamate levels in Wistar-Kyoto rats subjected to forebrain ischemia[J]. Acta Anaesthesiologica Scandinavica, 1999, 43(10): 989-998
    Russell W M S, Burch R L. The Principles of Humane Experimental Technique[M]. Methuen, 1959
    Organization for Economic Co-operation and Development (OECD). Test No. 424: Neurotoxicity study in rodents[R]. Paris: OECD, 1997
    McGrath P, Li C Q. Zebrafish: A predictive model for assessing drug-induced toxicity[J]. Drug Discovery Today, 2008, 13(9-10): 394-401
    Hill A J, Teraoka H, Heideman W, et al. Zebrafish as a model vertebrate for investigating chemical toxicity[J]. Toxicological Sciences, 2005, 86(1): 6-19
    Ferreira J M, Jorge S, Félix L, et al. Behavioural aversion and cortisol level assessment when adult zebrafish are exposed to different anaesthetics[J]. Biology, 2022, 11(10): 1433
    Shi W J, Jiang Y X, Huang G Y, et al. Dydrogesterone causes male bias and accelerates sperm maturation in zebrafish (Danio rerio)[J]. Environmental Science & Technology, 2018, 52(15): 8903-8911
    Ma D D, Jiang Y X, Zhang J G, et al. Transgenerational effects of androstadienedione and androstenedione at environmentally relevant concentrations in zebrafish (Danio rerio)[J]. Journal of Hazardous Materials, 2022, 423(Pt B): 127261
    Zhang J G, Ma D D, Xiong Q, et al. Imidacloprid and thiamethoxam affect synaptic transmission in zebrafish[J]. Ecotoxicology and Environmental Safety, 2021, 227: 112917
    Stanley K A, Curtis L R, Simonich S L, et al. Endosulfan Ⅰ and endosulfan sulfate disrupts zebrafish embryonic development[J]. Aquatic Toxicology, 2009, 95(4): 355-361
    Beekhuijzen M, de Koning C, Flores-Guillén M E, et al. From cutting edge to guideline: A first step in harmonization of the zebrafish embryotoxicity test (ZET) by describing the most optimal test conditions and morphology scoring system[J]. Reproductive Toxicology, 2015, 56: 64-76
    Li X S, Ding G H, Xiong Y J, et al. Toxicity of water-accommodated fractions (WAF), chemically enhanced WAF (CEWAF) of Oman crude oil and dispersant to early-life stages of zebrafish (Danio rerio)[J]. Bulletin of Environmental Contamination and Toxicology, 2018, 101(3): 314-319
    Panzica-Kelly J M, Zhang C X, Danberry T L, et al. Morphological score assignment guidelines for the dechorionated zebrafish teratogenicity assay[J]. Birth Defects Research Part B, Developmental and Reproductive Toxicology, 2010, 89(5): 382-395
    MacPhail R C, Brooks J, Hunter D L, et al. Locomotion in larval zebrafish: Influence of time of day, lighting and ethanol[J]. Neurotoxicology, 2009, 30(1): 52-58
    dos Santos C P, de Oliveira M N, Silva P F, et al. Relationship between boldness and exploratory behavior in adult zebrafish[J]. Behavioural Processes, 2023, 209: 104885
    Huang H H, Huang C J, Wang L J, et al. Toxicity, uptake kinetics and behavior assessment in zebrafish embryos following exposure to perfluorooctanesulphonicacid (PFOS)[J]. Aquatic Toxicology, 2010, 98(2): 139-147
    Tu X, Li Y W, Chen Q L, et al. Tributyltin enhanced anxiety of adult male zebrafish through elevating cortisol level and disruption in serotonin, dopamine and gamma-aminobutyric acid neurotransmitter pathways[J]. Ecotoxicology and Environmental Safety, 2020, 203: 111014
    Cheng B, Jiang F, Su M L, et al. Effects of lincomycin hydrochloride on the neurotoxicity of zebrafish[J]. Ecotoxicology and Environmental Safety, 2020, 201: 110725
    Dey S, Mactutus C F, Booze R M, et al. Cocaine exposure in vitro induces apoptosis in fetal locus coeruleus neurons by altering the Bax/Bcl-2 ratio and through caspase-3 apoptotic signaling[J]. Neuroscience, 2007, 144(2): 509-521
    Cunha-Oliveira T, Rego A C, Cardoso S M, et al. Mitochondrial dysfunction and caspase activation in rat cortical neurons treated with cocaine or amphetamine[J]. Brain Research, 2006, 1089(1): 44-54
    Wong H K, Fricker M, Wyttenbach A, et al. Mutually exclusive subsets of BH3-only proteins are activated by the p53 and c-Jun N-terminal kinase/c-Jun signaling pathways during cortical neuron apoptosis induced by arsenite[J]. Molecular and Cellular Biology, 2005, 25(19): 8732-8747
    Akhtar R S, Geng Y, Klocke B J, et al. BH3-only proapoptotic Bcl-2 family members Noxa and Puma mediate neural precursor cell death[J]. The Journal of Neuroscience, 2006, 26(27): 7257-7264
    Michalak E M, Villunger A, Adams J M, et al. In several cell types tumour suppressor p53 induces apoptosis largely via Puma but Noxa can contribute[J]. Cell Death and Differentiation, 2008, 15(6): 1019-1029
    Liu S, Zhang X P, Han N N, et al. Pretreatment with low dose etomidate prevents etomidate-induced rat adrenal insufficiency by regulating oxidative stress-related MAPKs and apoptosis[J]. Environmental Toxicology and Pharmacology, 2015, 39(3): 1212-1220
    Félix N M, Goy-Thollot I, Walton R S, et al. Etomidate decreases adrenal gland apoptosis and necrosis associated with hemorrhagic shock in a rat model (Rattus norvegicus)[J]. Cogent Biology, 2017, 3(1): 1393864
    Chen H T, Zhou J, Fan Y L, et al. Anesthetic agent etiomidate induces apoptosis in N2a brain tumor cell line[J]. Molecular Medicine Reports, 2018, 18(3): 3137-3142
    Cattano D, Young C, Straiko M M, et al. Subanesthetic doses of propofol induce neuroapoptosis in the infant mouse brain[J]. Anesthesia and Analgesia, 2008, 106(6): 1712-1714
    Fredriksson A, Pontén E, Gordh T, et al. Neonatal exposure to a combination of N-methyl-D-aspartate and gamma-aminobutyric acid type A receptor anesthetic agents potentiates apoptotic neurodegeneration and persistent behavioral deficits[J]. Anesthesiology, 2007, 107(3): 427-436
    Boscolo A, Starr J A, Sanchez V, et al. The abolishment of anesthesia-induced cognitive impairment by timely protection of mitochondria in the developing rat brain: The importance of free oxygen radicals and mitochondrial integrity[J]. Neurobiology of Disease, 2012, 45(3): 1031-1041
    Dubovický M, Kovaćovský P, Ujházy E, et al. Evaluation of developmental neurotoxicity: Some important issues focused on neurobehavioral development[J]. Interdisciplinary Toxicology, 2008, 1(3-4): 206-210
    Selderslaghs I W, Hooyberghs J, De Coen W, et al. Locomotor activity in zebrafish embryos: A new method to assess developmental neurotoxicity[J]. Neurotoxicology and Teratology, 2010, 32(4): 460-471
    Organization for Economic Co-operation and Development (OECD). OECD guideline for testing of chemicals. No. 426: Developmental neurotoxicity study[R]. Paris: OECD, 2008
    Saint-Amant L. Development of motor networks in zebrafish embryos[J]. Zebrafish, 2006, 3(2): 173-190
    Granato M, van Eeden F J, Schach U, et al. Genes controlling and mediating locomotion behavior of the zebrafish embryo and larva[J]. Development, 1996, 123: 399-413
    Ljunggren E E, Haupt S, Ausborn J, et al. Optogenetic activation of excitatory premotor interneurons is sufficient to generate coordinated locomotor activity in larval zebrafish[J]. The Journal of Neuroscience, 2014, 34(1): 134-139
    Ma X, Li H Z, Xiong J J, et al. Developmental toxicity of a neonicotinoid insecticide, acetamiprid to zebrafish embryos[J]. Journal of Agricultural and Food Chemistry, 2019, 67(9): 2429-2436
    Xia S Y, Zhu X H, Yan Y P, et al. Developmental neurotoxicity of antimony (Sb) in the early life stages of zebrafish[J]. Ecotoxicology and Environmental Safety, 2021, 218: 112308
    Newman R, O'Meara G, Fradley R, et al. Beta 2 subunit-containing GABA-a receptors are not necessary for etomidate-induced anaesthesia[J]. Acta Neurobiologiae Experimentalis, 2003, 63(5): 1
    Sharma S, Coombs S, Patton P, et al. The function of wall-following behaviors in the Mexican blind cavefish and a sighted relative, the Mexican tetra (Astyanax)[J]. Journal of Comparative Physiology A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 2009, 195(3): 225-240
    Pinheiro-da-Silva J, Agues-Barbosa T, Luchiari A C. Embryonic exposure to ethanol increases anxiety-like behavior in fry zebrafish[J]. Alcohol and Alcoholism, 2020, 55(6): 581-590
    Hankenson F C, Braden-Weiss G C, Blendy J A. Behavioral and activity assessment of laboratory mice (Mus musculus) after tail biopsy under isoflurane anesthesia[J]. Journal of the American Association for Laboratory Animal Science, 2011, 50(5): 686-694
    Salahpour A, Ramsey A J, Medvedev I O, et al. Increased amphetamine-induced hyperactivity and reward in mice overexpressing the dopamine transporter[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(11): 4405-4410
    Kacprzak V, Patel N A, Riley E, et al. Dopaminergic control of anxiety in young and aged zebrafish[J]. Pharmacology Biochemistry and Behavior, 2017, 157: 1-8
    Stednitz S J, Freshner B, Shelton S, et al. Selective toxicity of L-DOPA to dopamine transporter-expressing neurons and locomotor behavior in zebrafish larvae[J]. Neurotoxicology and Teratology, 2015, 52(Pt A): 51-56
    Peng B B, Xu Q K, Liu J, et al. Corticosterone attenuates reward-seeking behavior and increases anxiety via D2 receptor signaling in ventral tegmental area dopamine neurons[J]. The Journal of Neuroscience, 2021, 41(7): 1566-1581
    Bedrossiantz J, Bellot M, Dominguez-García P, et al. A zebrafish model of neurotoxicity by binge-like methamphetamine exposure[J]. Frontiers in Pharmacology, 2021, 12: 770319
    Beaulieu J M, Gainetdinov R R. The physiology, signaling, and pharmacology of dopamine receptors[J]. Pharmacological Reviews, 2011, 63(1): 182-217
    Dongjie S, Rajendran R S, Xia Q, et al. Neuroprotective effects of Tongtian oral liquid, a Traditional Chinese Medicine in the Parkinson's disease-induced zebrafish model[J]. Biomedecine & Pharmacotherapie, 2022, 148: 112706
    Asinof S K, Paine T A. Inhibition of GABA synthesis in the prefrontal cortex increases locomotor activity but does not affect attention in the 5-choice serial reaction time task[J]. Neuropharmacology, 2013, 65: 39-47
    Schousboe A, Bak L K, Waagepetersen H S. Astrocytic control of biosynthesis and turnover of the neurotransmitters glutamate and GABA[J]. Frontiers in Endocrinology, 2013, 4: 102
    Zaręba P, Gryzło B, Mazur G, et al. Development, recent achievements and current directions of research into GABA uptake inhibitors[J]. Current Medicinal Chemistry, 2021, 28(4): 750-776
    Saaristo M, Brodin T, Balshine S, et al. Direct and indirect effects of chemical contaminants on the behaviour, ecology and evolution of wildlife[J]. Proceedings Biological Sciences, 2018, 285(1885): 20181297
  • 加载中
计量
  • 文章访问数:  1356
  • HTML全文浏览数:  1356
  • PDF下载数:  181
  • 施引文献:  0
出版历程
  • 收稿日期:  2023-09-28
马栋栋, 李思颖, 张金阁, 卢志杰, 龙小冰, 黄争, 黄楚舒, 刘昕, 史文俊, 应光国. 麻醉剂依托咪酯诱导斑马鱼幼鱼神经发育毒性[J]. 生态毒理学报, 2024, 19(1): 40-53. doi: 10.7524/AJE.1673-5897.20230928002
引用本文: 马栋栋, 李思颖, 张金阁, 卢志杰, 龙小冰, 黄争, 黄楚舒, 刘昕, 史文俊, 应光国. 麻醉剂依托咪酯诱导斑马鱼幼鱼神经发育毒性[J]. 生态毒理学报, 2024, 19(1): 40-53. doi: 10.7524/AJE.1673-5897.20230928002
Ma Dongdong, Li Siying, Zhang Jinge, Lu Zhijie, Long Xiaobing, Huang Zheng, Huang Chushu, Liu Xin, Shi Wenjun, Ying Guangguo. Developmental Neurotoxicity of Anesthetic Etomidate on Zebrafish Larvae[J]. Asian journal of ecotoxicology, 2024, 19(1): 40-53. doi: 10.7524/AJE.1673-5897.20230928002
Citation: Ma Dongdong, Li Siying, Zhang Jinge, Lu Zhijie, Long Xiaobing, Huang Zheng, Huang Chushu, Liu Xin, Shi Wenjun, Ying Guangguo. Developmental Neurotoxicity of Anesthetic Etomidate on Zebrafish Larvae[J]. Asian journal of ecotoxicology, 2024, 19(1): 40-53. doi: 10.7524/AJE.1673-5897.20230928002

麻醉剂依托咪酯诱导斑马鱼幼鱼神经发育毒性

    通讯作者: 刘昕,E-mail: 87541944@qq.com;  史文俊,E-mail: wenjun.shi@m.scnu.edu.cn; 
    作者简介: 马栋栋(1991-),男,博士研究生,研究方向为生态毒理学,E-mail:dongdong.ma@m.scnu.edu.cn
  • 1. 华南师范大学环境研究院广东省化学污染与环境安全重点实验室, 华南师范大学环境理论化学教育部重点实验室, 广州 510006;
  • 2. 华南师范大学环境学院, 广州 510006;
  • 3. 广东省毒品实验技术中心(国家毒品实验室广东分中心), 广东省精神活性物质监测与安全重点实验室, 广州 510230
基金项目:

国家自然科学基金资助项目(42277268);广东省精神活性物质监测与安全重点实验室研究基金项目(2020B22101007)

摘要: 依托咪酯(etomidate, ET)在临床上常被用作麻醉剂。ET长期高剂量地使用会导致人类意识下降和认知障碍等负面效应。但ET对鱼类的神经毒性机制尚不清楚。在本文中,2 hpf (hours post-fertilization)的斑马鱼胚胎暴露于不同浓度ET (0.010、0.091、0.501、9.400、84.31和664.4 μg·L-1)至168 hpf。通过分析ET对斑马鱼胚胎生理发育、早期行为、细胞凋亡以及多巴胺(dopamine, DA)和γ氨基丁酸(gamma aminobutyric acid, GABA)通路相关基因转录表达水平的影响,评估其对斑马鱼幼鱼神经发育毒性。结果表明,664.4 μg·L-1 ET显著增大48 hpf和60 hpf斑马鱼胚胎孵化率。0.091 μg·L-1和0.501 μg·L-1 ET诱导168 hpf幼鱼体长减少。0.010、0.091、0.501、9.400、84.31和664.4 μg·L-1 ET增大48 hpf胚胎畸形评分。0.501、9.400、84.31和664.4 μg·L-1 ET暴露显著增大96 hpf胚胎畸形评分。0.501、9.400和664.4 μg·L-1 ET显著增大168 hpf胚胎畸形评分。0.010 μg·L-1 ET促进了大脑细胞凋亡,而664.4 μg·L-1 ET抑制了大脑细胞凋亡。行为分析显示,ET所有浓度均抑制触碰行为。0.091 μg·L-1 ET增强幼鱼游泳行为,而664.4 μg·L-1 ET减弱游泳行为。并且ET以浓度依赖的方式导致焦虑行为增加。qPCR分析结果表明,低浓度ET显著上调了DA和GABA通路相关基因的转录表达水平,而高浓度ET显著抑制了这些基因的转录表达水平。这些结果表明,ET对发育早期斑马鱼具有明显的神经发育毒性。

English Abstract

参考文献 (83)

返回顶部

目录

/

返回文章
返回