氯代多氟醚基磺酸对稀有鮈鲫肝脏组织损伤及其毒理学机制研究

徐婵, 宋杰玉, 李进, 杨鸿波, 滕春丽, 马凯, 谢锋. 氯代多氟醚基磺酸对稀有鮈鲫肝脏组织损伤及其毒理学机制研究[J]. 生态毒理学报, 2024, 19(3): 274-286. doi: 10.7524/AJE.1673-5897.20231229002
引用本文: 徐婵, 宋杰玉, 李进, 杨鸿波, 滕春丽, 马凯, 谢锋. 氯代多氟醚基磺酸对稀有鮈鲫肝脏组织损伤及其毒理学机制研究[J]. 生态毒理学报, 2024, 19(3): 274-286. doi: 10.7524/AJE.1673-5897.20231229002
Xu Chan, Song Jieyu, Li Jin, Yang Hongbo, Teng Chunli, Ma Kai, Xie Feng. Liver Tissue Damage and Toxicological Mechanism of F-53B on Chinese Rare Minnow (Gobiocypris Rarus)[J]. Asian journal of ecotoxicology, 2024, 19(3): 274-286. doi: 10.7524/AJE.1673-5897.20231229002
Citation: Xu Chan, Song Jieyu, Li Jin, Yang Hongbo, Teng Chunli, Ma Kai, Xie Feng. Liver Tissue Damage and Toxicological Mechanism of F-53B on Chinese Rare Minnow (Gobiocypris Rarus)[J]. Asian journal of ecotoxicology, 2024, 19(3): 274-286. doi: 10.7524/AJE.1673-5897.20231229002

氯代多氟醚基磺酸对稀有鮈鲫肝脏组织损伤及其毒理学机制研究

    作者简介: 徐婵(1998—),女,硕士研究生,研究方向为环境毒理学,E-mail: 2530566548@qq.com
    通讯作者: 杨鸿波(1976—),男,博士,教授,主要研究方向为环境毒理学。E-mail:hbyang@gmc.edu.cn; 
  • 基金项目:

    国家自然科学基金地区科学基金项目(21966011);贵州医科大学校博合J字((2020)044)

  • 中图分类号: X171.5

Liver Tissue Damage and Toxicological Mechanism of F-53B on Chinese Rare Minnow (Gobiocypris Rarus)

    Corresponding author: Yang Hongbo, hbyang@gmc.edu.cn
  • Fund Project:
  • 摘要: 6:2氯代多氟醚基磺酸(F-53B)作为全氟辛烷磺酸(perfluorooctane sulfonate, PFOS)的替代品,已在金属电镀行业使用了40多年,这种普遍使用导致其在环境、野生动物和人体中广泛检出,且有研究表明F-53B具有肝细胞毒性作用,但其脂毒性机制尚不明确。将5月龄稀有鮈鲫暴露于0、10和200 μg·L-1 28 d,以蛋白质组学作为研究手段,探究F-53B对稀有鮈鲫肝脏的脂毒性效应机制。在28 d暴露后,200 μg·L-1处理组观察到明显的血脂异常,肝脏蛋白组分析表明与脂质代谢相关的途径受到显著影响,与对照组相比,其中10 μg·L-1组与脂质代谢相关的上调蛋白有19个,下调的有4个,200 μg·L-1组上调蛋白有15个,下调蛋白9个,共同上调蛋白12个,下调蛋白2个,涉及脂肪酸降解、脂肪酸氧化、转运途径中酶的上调。同时PPAR信号通路参与了F-53B诱导的脂质代谢紊乱,表现为对PPAR的3种亚型的蛋白表达均产生激活作用,导致成骨/成脂分化失衡。这表明F-53B可破坏PPAR信号通路,破坏稀有鮈鲫的脂质稳态,结果可为F-53B脂毒作用机制研究提供新的思路。
  • 加载中
  • Zheng G M, Schreder E, Dempsey J C, et al. Per- and polyfluoroalkyl substances (PFAS) in breast milk: Concerning trends for current-use PFAS [J]. Environmental Science & Technology, 2021, 55(11): 7510-7520
    United Nations Environment Programme (UNEP). The conference of the parties 4 of the Stockholm Convention (COP-4) in Geneva placed perfluorooctane sulfonate and perfluorooctane sulfonyl fluoride (PFOS and PFOSF) in Annex B. [EB/OL]. (2009-05-09) [2023-12-28]. https://chm.pops.int/default.aspx
    中华人民共和国生态环境部. 重点管控新污染物清单[2022]28号[EB/OL]. (2022-12-29) [2023-12-28]. https://www.mee.gov.cn/gzk/gz/202212/t20221230_1009192.shtml
    Zhou X J, Wang J S, Sheng N, et al. Subchronic reproductive effects of 6: 2 chlorinated polyfluorinated ether sulfonate (6: 2 Cl-PFAES), an alternative to PFOS, on adult male mice [J]. Journal of Hazardous Materials, 2018, 358: 256-264
    杨静. 氯代多氟醚基磺酸对稀有鮈鲫的内分泌干扰效应和机制[D]. 大连: 大连理工大学, 2020: 4 Yang J. Endocrine disrupting effects and mechanisms of chlorinated polyfluorinated ether sulfonate on rare minnows [D]. Dalian: Dalian University of Technology, 2020: 4(in Chinese)
    He Y X, Lv D, Li C H, et al. Human exposure to F-53B in China and the evaluation of its potential toxicity: An overview [J]. Environment International, 2022, 161: 107108
    Wang S W, Huang J, Yang Y, et al. First report of a Chinese PFOS alternative overlooked for 30 years: Its toxicity, persistence, and presence in the environment [J]. Environmental Science & Technology, 2013, 47(18): 10163-10170
    Xu B T, Liu S, Zhou J L, et al. PFAS and their substitutes in groundwater: Occurrence, transformation and remediation [J]. Journal of Hazardous Materials, 2021, 412: 125159
    Xiao F. Emerging poly- and perfluoroalkyl substances in the aquatic environment: A review of current literature [J]. Water Research, 2017, 124: 482-495
    Shi Y L, Vestergren R, Xu L, et al. Human exposure and elimination kinetics of chlorinated polyfluoroalkyl ether sulfonic acids (Cl-PFESAs) [J]. Environmental Science & Technology, 2016, 50(5): 2396-2404
    Wang W T, Lee J, Oh J K, et al. Per- and polyfluoroalkyl substances and their alternatives in black-tailed gull (Larus crassirostris) eggs from South Korea Islands during 2012-2018[J]. Journal of Hazardous Materials, 2021, 411: 125036
    Wang P W, Liu D G, Yan S Q, et al. Adverse effects of perfluorooctane sulfonate on the liver and relevant mechanisms [J]. Toxics, 2022, 10(5): 265
    Zeng Z T, Song B, Xiao R, et al. Assessing the human health risks of perfluorooctane sulfonate by in vivo and in vitro studies [J]. Environment International, 2019, 126: 598-610
    Shi G H, Wang J X, Guo H, et al. Parental exposure to 6: 2 chlorinated polyfluorinated ether sulfonate (F-53B) induced transgenerational thyroid hormone disruption in zebrafish [J]. The Science of the Total Environment, 2019, 665: 855-863
    Cao H M, Zhou Z, Wang L, et al. Screening of potential PFOS alternatives to decrease liver bioaccumulation: Experimental and computational approaches [J]. Environmental Science & Technology, 2019, 53(5): 2811-2819
    Shi Y L, Vestergren R, Zhou Z, et al. Tissue distribution and whole body burden of the chlorinated polyfluoroalkyl ether sulfonic acid F-53B in crucian carp (Carassius carassius): Evidence for a highly bioaccumulative contaminant of emerging concern [J]. Environmental Science & Technology, 2015, 49(24): 14156-14165
    Das K P, Wood C R, Lin M T, et al. Perfluoroalkyl acids-induced liver steatosis: Effects on genes controlling lipid homeostasis [J]. Toxicology, 2017, 378: 37-52
    Cheng J F, Lv S P, Nie S F, et al. Chronic perfluorooctane sulfonate (PFOS) exposure induces hepatic steatosis in zebrafish [J]. Aquatic Toxicology, 2016, 176: 45-52
    Yi S J, Chen P Y, Yang L P, et al. Probing the hepatotoxicity mechanisms of novel chlorinated polyfluoroalkyl sulfonates to zebrafish larvae: Implication of structural specificity [J]. Environment International, 2019, 133(Pt B): 105262
    Zhang H X, Zhou X J, Sheng N, et al. Subchronic hepatotoxicity effects of 6: 2 chlorinated polyfluorinated ether sulfonate (6: 2 Cl-PFESA), a novel perfluorooctanesulfonate (PFOS) alternative, on adult male mice [J]. Environmental Science & Technology, 2018, 52(21): 12809-12818
    Wang Q Y, Huang J, Liu S, et al. Aberrant hepatic lipid metabolism associated with gut microbiota dysbiosis triggers hepatotoxicity of novel PFOS alternatives in adult zebrafish [J]. Environment International, 2022, 166: 107351
    Zhong W J, Zhang L Y, Cui Y N, et al. Probing mechanisms for bioaccumulation of perfluoroalkyl acids in carp (Cyprinus carpio): Impacts of protein binding affinities and elimination pathways [J]. The Science of the Total Environment, 2019, 647: 992-999
    黄晶. 新型全氟化合物替代品对斑马鱼的毒性效应及其分子机制研究[D]. 杭州: 浙江工业大学, 2022: 70-71 Huang J. Study on toxic effects and molecular mechanism of new perfluorocompounds substitutes on zebrafish [D]. Hangzhou: Zhejiang University of Technology, 2022: 70

    -71(in Chinese)

    Shi G H, Cui Q Q, Wang J X, et al. Chronic exposure to 6: 2 chlorinated polyfluorinated ether sulfonate acid (F-53B) induced hepatotoxic effects in adult zebrafish and disrupted the PPAR signaling pathway in their offspring [J]. Environmental Pollution, 2019, 249: 550-559
    Sheng N, Cui R N, Wang J H, et al. Cytotoxicity of novel fluorinated alternatives to long-chain perfluoroalkyl substances to human liver cell line and their binding capacity to human liver fatty acid binding protein [J]. Archives of Toxicology, 2018, 92(1): 359-369
    Li C H, Ren X M, Ruan T, et al. Chlorinated polyfluorinated ether sulfonates exhibit higher activity toward peroxisome proliferator-activated receptors signaling pathways than perfluorooctanesulfonate [J]. Environmental Science & Technology, 2018, 52(5): 3232-3239
    Behr A C, Plinsch C, Braeuning A, et al. Activation of human nuclear receptors by perfluoroalkylated substances (PFAS) [J]. Toxicology in Vitro: An International Journal Published in Association with BIBRA, 2020, 62: 104700
    Yin N Y, Yang R J, Liang S J, et al. Evaluation of the early developmental neural toxicity of F-53B, as compared to PFOS, with an in vitro mouse stem cell differentiation model [J]. Chemosphere, 2018, 204: 109-118
    徐兰兰. 镉和砷对许氏平鲉幼鱼毒理效应蛋白质组学和代谢组学研究[D]. 北京: 中国科学院大学, 2020: 13-14 Xu L L. Proteomic and metabolomic studies on the toxicological effects of cadmium and arsenic in juvenile rockfish Sebastes schlegelii [D]. Beijing: University of Chinese Academy of Sciences, 2020: 13

    -14(in Chinese)

    王剑伟, 曹文宣. 中国本土鱼类模式生物稀有鮈鲫研究应用的历史与现状[J]. 生态毒理学报, 2017, 12(2): 20-33

    Wang J W, Cao W X. Gobiocypris rarus as a Chinese native model organism: History and current situation [J].Asian Journal of Ecotoxicology, 2017, 12(2): 20-33(in Chinese)

    经济合作与发展组织(OECD). 经济合作与发展组织化学品测试准则[M]. 北京: 中国农业出版社, 2013: 658-665
    Liu W, Yang J, Li J W, et al.Toxicokinetics and persistent thyroid hormone disrupting effects of chronic developmental exposure to chlorinated polyfluorinated ether sulfonate in Chinese rare minnow [J]. Environmental Pollution, 2020, 263(Pt B): 114491
    陈家苗, 王建设. 新型全氟和多氟烷醚类化合物的环境分布与毒性研究进展[J]. 生态毒理学报, 2020, 15(5): 28-34

    Chen J M, Wang J S. Research progress in environmental distribution and toxicity of per-and polyfluoroalkyl ether substances [J]. Asian Journal of Ecotoxicology, 2020, 15(5): 28-34(in Chinese)

    Zhang Y T, Zeeshan M, Su F, et al. Associations between both legacy and alternative per- and polyfluoroalkyl substances and glucose-homeostasis: The isomers of C8 Health Project in China [J]. Environment International, 2022, 158: 106913
    Zeeshan M, Zhang Y T, Yu S, et al. Exposure to isomers of per- and polyfluoroalkyl substances increases the risk of diabetes and impairs glucose-homeostasis in Chinese adults: Isomers of C8 Health Project [J]. Chemosphere, 2021, 278: 130486
    Han X, Meng L L, Zhang G X, et al. Exposure to novel and legacy per- and polyfluoroalkyl substances (PFASs) and associations with type 2 diabetes: A case-control study in East China [J]. Environment International, 2021, 156: 106637
    Duan Y S, Sun H W, Yao Y M, et al. Serum concentrations of per-/ polyfluoroalkyl substances and risk of type 2 diabetes: A case-control study [J]. The Science of the Total Environment, 2021, 787: 147476
    Yang Q Y, Guo X L, Sun P L, et al. Association of serum levels of perfluoroalkyl substances (PFASs) with the metabolic syndrome (MetS) in Chinese male adults: A cross-sectional study [J]. The Science of the Total Environment, 2018, 621: 1542-1549
    Jain R B, Ducatman A. Selective associations of recent low concentrations of perfluoroalkyl substances with liver function biomarkers: NHANES 2011 to 2014 data on US adults aged ≥20 years [J]. Journal of Occupational and Environmental Medicine, 2019, 61(4): 293-302
    Attanasio R. Sex differences in the association between perfluoroalkyl acids and liver function in US adolescents: Analyses of NHANES 2013-2016[J]. Environmental Pollution, 2019, 254(Pt B): 113061
    陈志新. 糖酵解在范可尼综合征中发病机制初探[D]. 北京: 北京协和医学院, 2019: 13-14 Chen Z X. Preliminary study on the pathogenesis of glycolysis in Fanconi syndrome [D]. Beijing: Peking Union Medical College, 2019: 13

    -14(in Chinese)

    Tan C K, Zhuang Y, Wahli W. Synthetic and natural peroxisome proliferator-activated receptor (PPAR) agonists as candidates for the therapy of the metabolic syndrome [J]. Expert Opinion on Therapeutic Targets, 2017, 21(3): 333-348
    郑璐, 潘一帆, 秦会, 等. 全氟辛烷磺酸(PFOS)对人骨髓间充质干细胞PPARs亚型及分化潜能的影响[J]. 生态毒理学报, 2021, 16(2): 151-157

    Zheng L, Pan Y F, Qin H, et al. Interference of perfluorooctane sulfonate (PFOS) on PPARs subtypes and differentiation potential in human bone marrow mesenchymal stem cells [J]. Asian Journal of Ecotoxicology, 2021, 16(2): 151-157(in Chinese)

    Qiu Y H, Gan M L, Wang X Y, et al. The global perspective on peroxisome proliferator-activated receptor γ (PPARγ) in ectopic fat deposition: A review [J]. International Journal of Biological Macromolecules, 2023, 253(Pt 5): 127042
    Minata M, Harada K H, Kärrman A, et al. Role of peroxisome proliferator-activated receptor-alpha in hepatobiliary injury induced by ammonium perfluorooctanoate in mouse liver [J]. Industrial Health, 2010, 48(1): 96-107
    Guo J, Wu J, He Q Y, et al. The potential role of PPARs in the fetal origins of adult disease [J]. Cells, 2022, 11(21): 3474
    Cave M C, Clair H B, Hardesty J E, et al. Nuclear receptors and nonalcoholic fatty liver disease [J]. Biochimica et Biophysica Acta, 2016, 1859(9): 1083-1099
  • 加载中
计量
  • 文章访问数:  1063
  • HTML全文浏览数:  1063
  • PDF下载数:  173
  • 施引文献:  0
出版历程
  • 收稿日期:  2023-12-29
徐婵, 宋杰玉, 李进, 杨鸿波, 滕春丽, 马凯, 谢锋. 氯代多氟醚基磺酸对稀有鮈鲫肝脏组织损伤及其毒理学机制研究[J]. 生态毒理学报, 2024, 19(3): 274-286. doi: 10.7524/AJE.1673-5897.20231229002
引用本文: 徐婵, 宋杰玉, 李进, 杨鸿波, 滕春丽, 马凯, 谢锋. 氯代多氟醚基磺酸对稀有鮈鲫肝脏组织损伤及其毒理学机制研究[J]. 生态毒理学报, 2024, 19(3): 274-286. doi: 10.7524/AJE.1673-5897.20231229002
Xu Chan, Song Jieyu, Li Jin, Yang Hongbo, Teng Chunli, Ma Kai, Xie Feng. Liver Tissue Damage and Toxicological Mechanism of F-53B on Chinese Rare Minnow (Gobiocypris Rarus)[J]. Asian journal of ecotoxicology, 2024, 19(3): 274-286. doi: 10.7524/AJE.1673-5897.20231229002
Citation: Xu Chan, Song Jieyu, Li Jin, Yang Hongbo, Teng Chunli, Ma Kai, Xie Feng. Liver Tissue Damage and Toxicological Mechanism of F-53B on Chinese Rare Minnow (Gobiocypris Rarus)[J]. Asian journal of ecotoxicology, 2024, 19(3): 274-286. doi: 10.7524/AJE.1673-5897.20231229002

氯代多氟醚基磺酸对稀有鮈鲫肝脏组织损伤及其毒理学机制研究

    通讯作者: 杨鸿波(1976—),男,博士,教授,主要研究方向为环境毒理学。E-mail:hbyang@gmc.edu.cn; 
    作者简介: 徐婵(1998—),女,硕士研究生,研究方向为环境毒理学,E-mail: 2530566548@qq.com
  • 1. 贵州医科大学公共卫生与健康学院, 环境污染与疾病监控教育部重点实验室, 贵阳 561113;
  • 2. 贵州省分析测试研究院, 贵阳 550014;
  • 3. 贵州健安德科技有限公司, 贵阳 550016;
  • 4. 茅台学院食品科学与工程系, 仁怀 564507
基金项目:

国家自然科学基金地区科学基金项目(21966011);贵州医科大学校博合J字((2020)044)

摘要: 6:2氯代多氟醚基磺酸(F-53B)作为全氟辛烷磺酸(perfluorooctane sulfonate, PFOS)的替代品,已在金属电镀行业使用了40多年,这种普遍使用导致其在环境、野生动物和人体中广泛检出,且有研究表明F-53B具有肝细胞毒性作用,但其脂毒性机制尚不明确。将5月龄稀有鮈鲫暴露于0、10和200 μg·L-1 28 d,以蛋白质组学作为研究手段,探究F-53B对稀有鮈鲫肝脏的脂毒性效应机制。在28 d暴露后,200 μg·L-1处理组观察到明显的血脂异常,肝脏蛋白组分析表明与脂质代谢相关的途径受到显著影响,与对照组相比,其中10 μg·L-1组与脂质代谢相关的上调蛋白有19个,下调的有4个,200 μg·L-1组上调蛋白有15个,下调蛋白9个,共同上调蛋白12个,下调蛋白2个,涉及脂肪酸降解、脂肪酸氧化、转运途径中酶的上调。同时PPAR信号通路参与了F-53B诱导的脂质代谢紊乱,表现为对PPAR的3种亚型的蛋白表达均产生激活作用,导致成骨/成脂分化失衡。这表明F-53B可破坏PPAR信号通路,破坏稀有鮈鲫的脂质稳态,结果可为F-53B脂毒作用机制研究提供新的思路。

English Abstract

参考文献 (47)

返回顶部

目录

/

返回文章
返回