基于反距离权重插值法与BP神经网络对浙江某电镀厂遗留地块土壤重金属健康风险评价及预测
Evaluation and Prediction of Heavy Metal Health Risk in Soils Left Over from an Electroplating Plant in Zhejiang Province Based on BP Neural Network and Inverse-Distance Weighting
-
摘要: 为电镀厂拆迁遗留地块污染恢复提供理论支撑,以浙江省湖州某已停产的电镀厂为研究对象,采用内梅罗指数法、人体健康风险评估模型对研究区域内土壤重金属浓度空间分布进行特征分析,并对区域内土壤重金属污染对人类的健康风险进行评价。通过MATLAB构建的BP(Back Propagation)神经网络预测模型预测深层土壤对人体的健康风险,运用ArcGIS软件使用反距离权重插值法绘制地块健康风险预测分布图。预测结果显示Cr、Ni为研究区主要污染物,地下储罐埋地Cr的致癌风险达到0.35属于高致癌风险,表层土壤中重金属超标主要集中在地下储罐埋地、镀锌镀镍车间及临时废弃物堆积区,可能是由电镀作业地面防渗措施不足及电镀废弃物处置不当造成的。构建的BP神经网络预测模型显示,调查地块内Cr、As、Ni在深层土壤(2.0~2.5 m深度)中仍然具有致癌风险,且Cr的致癌风险属于较高水平,Ni、Cr、As、Zn、Cu等在2.0~2.5 m处土壤中已无非致癌风险。Abstract: The study area was a derelict electroplating factory in Huzhou of Zhejiang Province, and the health risk of soil heavy metal pollution in the region by means of the Nemero index method and human health risk assessment models was undertaken to analyze the characteristics of the spatial distribution of soil heavy metal concentration, in order to provide theoretical support for environmental pollution recovery of electroplating plant demolition. A BP (Back Propagation) neural network prediction model was constructed by MATLAB to forecast the human health risk of the heavy metal contamination in deep soil. At the same time, the inverse distance weight interpolation method in ArcGIS software was used to draw the distribution map of the predicted health risk. The results revealed that the studied area was largely contaminated by Cr and Ni. The carcinogenic risk of Cr in buried underground storage tanks was 0.35, which was a high risk for cancer. The excessive heavy metals in the surface soil were mainly concentrated in underground storage tank burial, galvanizing and nickel-plating workshops, and temporary waste accumulation areas, which may be caused by insufficient anti-seepage measures on the electroplating operation ground and improper disposal of electroplating waste. The constructed BP neural network prediction model showed that Cr, As, and Ni in the plot still have a carcinogenic risk in the deep soil at a depth of 2.0~2.5 m; Ni, Cr, As, Zn, Cu, and other elements no longer have non carcinogenic risks in the soil at a depth of 2.0~2.5 m.
-
Key words:
- heavy metal /
- BP neural network /
- health risk evaluation /
- spatial distribution
-
-
任磊. 园林绿化在城市建设中的作用和意义[J]. 花卉, 2018(24): 125-126 Ren L. The function and significance of landscaping in urban construction [J]. Flowers, 2018 (24): 125-126(in Chinese)
夏威夷, 王栋, 朱迟, 等. 江苏省土壤修复产业发展现状及对策分析[J]. 环境监控与预警, 2021, 13(2): 60-65 Xia W Y, Wang D, Zhu C, et al. Analysis on the development status and countermeasures of soil remediation industry in Jiangsu Province [J]. Environmental Monitoring and Forewarning, 2021, 13(2): 60-65(in Chinese)
Raei B, Ahmadi A, Neyshaburi M R, et al. Comparative evaluation of the whale optimization algorithm and backpropagation for training neural networks to model soil wind erodibility [J]. Arabian Journal of Geosciences, 2021, 14(1): 29 杨大龙. 合肥市区表层土壤重金属污染特征及健康风险评估[D]. 合肥: 安徽医科大学, 2021: 2-10 Yang D L. Pollution characteristics and health risk assessment of heavy metals in topsoil of Hefei City proper [D]. Hefei: Anhui Medical University, 2021: 2 -10(in Chinese)
刘玉兰, 许敬红. 废弃电镀厂污染场地土壤污染分布规律研究[J]. 绿色科技, 2020(24): 111-115 Liu Y L, Xu J H. Study on the distribution law of soil pollution in a contaminated site of an abandoned electroplating factory [J]. Journal of Green Science and Technology, 2020 (24): 111-115(in Chinese)
施维林, 罗王捷. 有机物污染土壤修复技术研究与应用进展[J]. 苏州科技大学学报(自然科学版), 2022, 39(2): 1-8 Shi W L, Luo W J. A review of remediation technology of organic contaminated soil [J]. Journal of Suzhou University of Science and Technology (Natural Science Edition), 2022, 39(2): 1-8(in Chinese) 岳辉. 化工环境污染的特点与防治措施[J]. 石化技术, 2023, 30(9): 220-222 Yue H. Characteristics and prevention measures of chemical environmental pollution [J]. Petrochemical Industry Technology, 2023, 30(9): 220-222(in Chinese)
Okechukwu V U, Omokpariola D O, Onwukeme V I, et al. Pollution investigation and risk assessment of polycyclic aromatic hydrocarbons in soil and water from selected dumpsite locations in rivers and Bayelsa State, Nigeria [J]. Environmental Analysis, Health and Toxicology, 2021, 36(4): e2021023-e2021020 陈洁, 施维林, 张一梅, 等. 电镀厂遗留场地污染分析及健康风险空间分布评价[J]. 环境工程, 2018, 36(4): 153-159 Chen J, Shi W L, Zhang Y M, et al. Pollution analysis and spatial distribution of health risk in electroplating abandoned site [J]. Environmental Engineering, 2018, 36(4): 153-159(in Chinese)
杜潮炯. 青山湖(水库)水质污染特征及主要污染物通量估算[D]. 杭州: 浙江农林大学, 2021: 8-20 Du C J. Study of pollution characteristics and fluxes of the main contaminants in Qingshan Lake [D]. Hangzhou: Zhejiang A & F University, 2021: 8 -20(in Chinese)
Hossain M, Patra P K. Contamination zoning and health risk assessment of trace elements in groundwater through geostatistical modelling [J]. Ecotoxicology and Environmental Safety, 2020, 189: 110038 刘洋. 某化肥厂遗留场地土壤重金属污染及健康风险评估[D]. 合肥: 安徽建筑大学, 2016: 5-15 Liu Y. Pollution analysis and health risk assessment of heavy metals in the remaining site of a fertilizer plant [D]. Hefei: Anhui Jianzhu University, 2016: 5 -15(in Chinese)
李向, 管涛, 徐清. 基于BP神经网络的土壤重金属污染评价方法: 以包头土壤环境质量评价为例[J]. 中国农学通报, 2012, 28(2): 250-256 Li X, Guan T, Xu Q. The evaluation of soil heavy metal pollution based on the BP neural network: Taking soil environmental quality assessment in Baotou as an example [J]. Chinese Agricultural Science Bulletin, 2012, 28(2): 250-256(in Chinese)
刘荣. 人工神经网络基本原理概述[J]. 计算机产品与流通, 2020(6): 35, 81 Liu R. Overview of basic principles of artificial neural network [J]. Computer Products and Circulation, 2020 (6): 35, 81(in Chinese)
周政. BP神经网络的发展现状综述[J]. 山西电子技术, 2008(2): 90-92 Zhou Z. Survey of current progress in BP neural network [J]. Shanxi Electronic Technology, 2008 (2): 90-92(in Chinese)
张驰, 郭媛, 黎明. 人工神经网络模型发展及应用综述[J]. 计算机工程与应用, 2021, 57(11): 57-69 Zhang C, Guo Y, Li M. Review of development and application of artificial neural network models [J]. Computer Engineering and Applications, 2021, 57(11): 57-69(in Chinese)
Nanos N, Grigoratos T, Rodríguez Martín J A, et al. Scale-dependent correlations between soil heavy metals and As around four coal-fired power plants of northern Greece [J]. Stochastic Environmental Research and Risk Assessment, 2015, 29(6): 1531-1543 张钰, 王让会, 李成. 基于BP神经网络的表层土壤重金属分布模拟[J]. 安全与环境工程, 2014, 21(2): 51-56 Zhang Y, Wang R H, Li C. Distribution simulation of heavy metals in surface soil based on BP neural network [J]. Safety and Environmental Engineering, 2014, 21(2): 51-56(in Chinese)
黄煜韬, 施维林, 纪娟, 等. 基于BP神经网络对某电镀厂土壤重金属预测及人体健康风险评价[J]. 生态毒理学报, 2022, 17(2): 278-289 Huang Y T, Shi W L, Ji J, et al. Prediction of soil heavy metals based on BP neural network and assessment of human health risk of an electroplating plant [J]. Asian Journal of Ecotoxicology, 2022, 17(2): 278-289(in Chinese)
段宁, 杨思言, 魏婉婷. 基于BP神经网络的铅酸蓄电池厂地下水重金属浓度预测[J]. 环境科学与技术, 2016, 39(1): 194-198 Duan N, Yang S Y, Wei W T. Prediction of heavy metal concentrations of the groundwater from a lead-acid battery factory based on BP neural network [J]. Environmental Science & Technology, 2016, 39(1): 194-198(in Chinese)
倪碧珩, 施维林, 陈洁, 等. 某电镀厂地块重金属污染特征与健康风险空间分布评价[J]. 环境工程技术学报, 2022, 12(3): 878-885 Ni B H, Shi W L, Chen J, et al. Pollution characteristics and spatial distribution evaluation of the health risk of heavy metals in an electroplating plant site [J]. Journal of Environmental Engineering Technology, 2022, 12(3): 878-885(in Chinese)
生态环境部, 国家市场监督管理总局. 土壤环境质量建设用地土壤污染风险管控标准: GB 36600—2018[S]. 北京: 中国标准出版社, 2018 生态环境部. 建设用地土壤污染状况调查技术导则: HJ 25.1—2019[S]. 北京: 中国环境科学出版社, 2019 生态环境部. 建设用地土壤污染风险管控和修复监测技术导则: HJ 25.2—2019[S]. 北京: 中国环境科学出版社, 2019 吴延平. “四分”法在铝土矿山综采工艺矿石质量管理中的应用研究[J]. 世界有色金属, 2019(10): 172-173 Wu Y P. Research on the application of “four points” method in the quality management of ore in the comprehensive mining process of bauxite mine [J]. World Nonferrous Metals, 2019 (10): 172-173(in Chinese)
Yu H J, Li C C, Yan J, et al. A review on adsorption characteristics and influencing mechanism of heavy metals in farmland soil [J]. RSC Advances, 2023, 13(6): 3505-3519 生态环境部. 建设用地土壤污染风险评估技术导则: HJ 25.3—2019[S]. 北京: 中国环境科学出版社, 2019 深圳市市场监督管理局. 建设用地土壤污染风险筛选值和管制值: DB 4403/T 67—2020[S]. 北京: 中国环境科学出版社, 2020 张晶, 邬立, 冯晓琳. 内梅罗综合指数法在河道底泥重金属污染评价中的应用与研究[J]. 地下水, 2023, 45(5): 113-116 Zhang J, Wu L, Feng X L. Application and study of Nemero composite index method in assessment of heavy metal pollution in river sediment [J]. Ground Water, 2023, 45(5): 113-116(in Chinese)
Islam S, Ahmed K, Habibullah-Al-Mamun, et al. Potential ecological risk of hazardous elements in different land-use urban soils of Bangladesh [J]. The Science of the Total Environment, 2015, 512/513: 94-102 李秋燕, 魏明辉, 戴慧敏, 等. 锦州市土壤重金属污染特征及生态风险评价[J]. 地质与资源, 2021, 30(4): 465-472 Li Q Y, Wei M H, Dai H M, et al. Characteristics of soil heavy metal pollution and ecological risk assessment of Jinzhou City [J]. Geology and Resources, 2021, 30(4): 465-472(in Chinese)
Gao Z Q, Fu W J, Zhang M J, et al. Potentially hazardous metals contamination in soil-rice system and it’s spatial variation in Shengzhou City, China [J]. Journal of Geochemical Exploration, 2016, 167: 62-69 杜艳君, 班婕, 孙庆华, 等. 《化学物质环境健康风险评估技术指南》解读[J]. 山东大学学报(医学版), 2021, 59(12): 20-23 Du Y J, Ban J, Sun Q H, et al. Interpretation of the “Technical Guide for Environmental Health Risk Assessment of Chemical Exposure” [J]. Journal of Shandong University (Health Sciences), 2021, 59(12): 20-23(in Chinese) 周琼, 仵彦卿. 上海市某场地土壤中PAHs的人体健康风险评价[J]. 湘潭大学自然科学学报, 2018, 40(3): 80-85 Zhou Q, Wu Y Q. Human health risk assessment of PAHs in soil of a site in Shanghai [J]. Natural Science Journal of Xiangtan University, 2018, 40(3): 80-85(in Chinese)
罗成科, 毕江涛, 肖国举, 等. 宁东基地不同工业园区周边土壤重金属污染特征及其评价[J]. 生态环境学报, 2017, 26(7): 1221-1227 Luo C K, Bi J T, Xiao G J, et al. Pollution characteristics and assessment of heavy metals in soil of different industry zones of Ningdong base in Ningxia, China [J]. Ecology and Environmental Sciences, 2017, 26(7): 1221-1227(in Chinese)
Ferreira-Baptista L, De Miguel E. Geochemistry and risk assessment of street dust in Luanda, Angola: A tropical urban environment [J]. Atmospheric Environment, 2005, 39(25): 4501-4512 环境保护部. 中国人群暴露参数手册(成人卷)[M]. 北京: 中国环境出版社, 2013: 1-10 韩煦, 施维林. 某染料厂污染场地重金属含量分析及健康风险评价[J]. 苏州科技大学学报(自然科学版), 2022, 39(1): 57-65 Han X, Shi W L. Content analysis and health risk assessment of heavy metal contaminated site in a dye factory [J]. Journal of Suzhou University of Science and Technology (Natural Science Edition), 2022, 39(1): 57-65(in Chinese) 张驰, 郭媛, 黎明. 人工神经网络模型发展及应用综述[J]. 计算机工程与应用, 2021, 57(11): 57-69 Zhang C, Guo Y, Li M. Review of development and application of artificial neural network models [J]. Computer Engineering and Applications, 2021, 57(11): 57-69(in Chinese)
王良玉, 张明林, 祝洪涛, 等. 人工神经网络及其在地学中的应用综述[J]. 世界核地质科学, 2021, 38(1): 15-26 Wang L Y, Zhang M L, Zhu H T, et al. Review on artificial neural networks and their applications in geoscience [J]. World Nuclear Geoscience, 2021, 38(1): 15-26(in Chinese)
王广. 人工神经网络发展现状综述[J]. 中小企业管理与科技(下旬刊), 2017(2): 165-167 Wang G. Overview of the development of artificial neural networks [J]. Management & Technology of SME, 2017(2): 165-167(in Chinese) 杨洋, 陈家俊. 基于群智能算法优化BP神经网络的应用研究综述[J]. 电脑知识与技术, 2020, 16(35): 7-10 , 14 Yang Y, Chen J J. Review on application of intelligent algorithm to optimize BP neural network [J]. Computer Knowledge and Technology, 2020, 16(35): 7-10, 14(in Chinese)
陈流豪. 神经网络BP算法研究综述[J]. 电脑知识与技术, 2010, 6(36): 10364-10365 Chen L H. Studying and summarizing of BP neural network [J]. Computer Knowledge and Technology, 2010, 6(36): 10364-10365(in Chinese)
李海涛, 邵泽东. 空间插值分析算法综述[J]. 计算机系统应用, 2019, 28(7): 1-8 Li H T, Shao Z D. Review of spatial interpolation analysis algorithm [J]. Computer Systems & Applications, 2019, 28(7): 1-8(in Chinese)
Liu Z, Zhang Z L, Zhou C Y, et al. An adaptive inverse-distance weighting interpolation method considering spatial differentiation in 3D geological modeling [J]. Geosciences, 2021, 11(2): 51 Hassan H M, Ismaeel A J, Ethaib S, et al. Developing spatial models of groundwater quality in the southwestern desert of Iraq using GIS, inverse distance weighting, and Kriging interpolation techniques [J]. Mathematical Modelling of Engineering Problems, 2023, 10(4): 1169-1179 成功, 李嘉璇, 戴之秀. BP神经网络在土壤重金属污染分析中的应用[J]. 地质学刊, 2017, 41(3): 394-400 Cheng G, Li J X, Dai Z X. Application of BP neural network on the analysis of heavy metal contamination in soil [J]. Journal of Geology, 2017, 41(3): 394-400(in Chinese)
金昭, 吕建树. 基于机器学习模型的区域土壤重金属空间预测精度比较研究[J]. 地理研究, 2022, 41(6): 1731-1747 Jin Z, Lv J S. Comparison of the accuracy of spatial prediction for heavy metals in regional soils based on machine learning models [J]. Geographical Research, 2022, 41(6): 1731-1747(in Chinese)
Hakanson L. An ecological risk index for aquatic pollution control. A sedimentological approach [J]. Water Research, 1980, 14(8): 975-1001 -

计量
- 文章访问数: 759
- HTML全文浏览数: 759
- PDF下载数: 125
- 施引文献: 0