贵州地质高背景区稻鱼共生系统汞的风险评估
Risk Assessment of Mercury in Rice-Fish Coculture with High Geological Background Area in Guizhou
-
摘要: 为了解高地质背景区稻鱼共生系统中汞的潜在环境和健康风险,本研究选取贵州省喀斯特地质高背景区黔东南丹寨县、麻江县和非喀斯特地区从江县、榕江县和锦屏县为研究对象,采集稻鱼共生系统中稻田土壤、稻米和稻花鱼样品,测定总汞(THg)和甲基汞(MeHg)含量。采用地累积指数法和潜在生态风险指数法评估土壤环境风险;通过稻米和稻花鱼MeHg含量及不同年龄段居民膳食摄入情况,评估了居民摄入稻米和稻花鱼的汞暴露风险。结果表明:喀斯特地区土壤THg和MeHg含量均高于非喀斯特地区,但其甲基化率却弱于后者;喀斯特区域分别有28%和37%的稻田土壤样品THg含量超过我国水稻生产土壤汞阈值标准(0.65 mg·kg-1)和农用地水田土壤污染风险管控标准(0.50 mg·kg-1),而非喀斯特区域土壤均未超标。土壤生态风险评估结果显示:喀斯特地区土壤的汞污染水平和生态风险更高。喀斯特地区稻米THg和稻花鱼MeHg含量分别为(5.15±4.19) ng·g-1和(32.80±23.05) ng·g-1,高于非喀斯特区域分别为(3.43±0.87) ng·g-1和(11.77±7.08) ng·g-1,但稻米汞的富集系数更低,鱼米汞含量均低于我国食品安全标准限值规定的THg 0.02 mg·kg-1和MeHg 0.50 mg·kg-1。居民膳食风险评估表明:“稻米+稻花鱼”食用模式的居民风险值HQ较高,且随居民年龄增加而降低,女性高于男性,但总体HQ<1,对居民没有汞暴露风险。以上结果表明,地质高背景区的稻鱼共生系统整体呈现低风险水平。Abstract: In order to understand the potential environmental and health risks of mercury in rice-fish coculture systems at natural high geologic background areas, we collected soil, rice and fish samples from two Karst areas (Danzhai and Majiang), and three non-Karstic areas (Congjiang, Rongjiang and Jinping) in southeast Guizhou Province, and the total mercury (THg) and methylmercury (MeHg) concentrations in these samples were measured. The environmental pollution risk of mercury in soil was evaluated by geoaccumulation index and potential ecological risk index, and health risks for residents of different age groups were estimated based on rice and fish MeHg data. Results showed that soil THg and MeHg concentrations in Karst soils were higher than those in non-Karstic areas, while the ratio of MeHg to THg in Karst area, which represents mercury methylation potential, was lower than in the non Karst areas. 28% of paddy soil samples from Karst regions exceeded the domestic safety threshold values of soil THg for rice production (0.65 mg·kg-1), and 37% of them exceeded the risk control standard of soil THg in agricultural paddy field (0.50 mg·kg-1), while none of soil samples from non-Karstic areas exceeded the above standards. The ecological risk assessment of soil showed that higher mercury pollution level and ecological hazard occurred in the Karst area. The levels of THg in rice were (5.15±4.19) ng·g-1 and (3.43±0.87) ng·g-1, and fish MeHg were (32.80±23.05) ng·g-1 and (11.77±7.08) ng·g-1 in the Karst and non-Karstic regions, respectively. The mean rice THg and fish MeHg concentrations in the Karst region were higher than those in the non-Karstic region, however, lower bioconcentration factor (BCF) in rice samples. The THg in rice and MeHg in fish from all the samples, including Karst and non-Karst, were below the national food safety limits, which were 0.02 mg·kg-1 for rice THg and 0.5 mg·kg-1 for fish MeHg. Dietary risk assessment indicated that the HQ via “rice + fish” consumption pattern was higher for residents and decreased with age. The HQ in females was higher than in males, but overall HQ<1, suggesting that there is no mercury exposure risk to the population. Overall, the results showed that the whole risk level in the rice-fish coculture system from geological high background area was low.
-
Key words:
- mercury /
- rice-fish coculture system /
- risk assessment /
- high geological background area
-
-
Johnston T A, Lescord G L, Quesnel M, et al. Age, body size, growth and dietary habits: What are the key factors driving individual variability in mercury of lacustrine fishes in northern temperate lakes?[J]. Environmental Research, 2022, 213: 113740 Mergler D, Anderson H A, Chan L H, et al. Methylmercury exposure and health effects in humans: A worldwide concern[J]. Ambio, 2007, 36(1): 3-11 Fuentes-Gandara F, Herrera-Herrera C, Pinedo-Hernández J, et al. Assessment of human health risk associated with methylmercury in the imported fish marketed in the Caribbean[J]. Environmental Research, 2018, 165: 324-329 Zhao L, Meng B, Feng X B. Mercury methylation in rice paddy and accumulation in rice plant: A review[J]. Ecotoxicology and Environmental Safety, 2020, 195: 110462 Zhang H, Feng X B, Larssen T, et al. In inland China, rice, rather than fish, is the major pathway for methylmercury exposure[J]. Environmental Health Perspectives, 2010, 118(9): 1183-1188 李雨芩, 孙涛, 邓晗, 等. 汞在酸性紫色水稻土的转化与水稻汞富集特征[J]. 环境科学, 2018, 39(5): 2472-2479 Li Y Q, Sun T, Deng H, et al. Characteristics of mercury transformation in soil and accumulation in rice plants in an acidic purple paddy soil area[J]. Environmental Science, 2018, 39(5): 2472-2479(in Chinese)
Meng B, Feng X B, Qiu G L, et al. The process of methylmercury accumulation in rice (Oryza sativa L.)[J]. Environmental Science & Technology, 2011, 45(7): 2711-2717 Yuan J, Liao C S, Zhang T L, et al. Advances in ecology research on integrated rice field aquaculture in China[J]. Water, 2022, 14(15): 2333 冯新斌, 史建波, 李平, 等. 我国汞污染研究与履约进展[J]. 中国科学院院刊, 2020, 35(11): 1344-1350 Feng, X B, Shi J B, Li P, et al. Progress of mercury pollution research and implementation of Minamata convention in China[J]. Bulletin of Chinese Academy of Sciences, 2020, 35(11): 1344-1350(in Chinese)
Zhan J, Li X Y, Christie P, et al. A review of soil potentially toxic element contamination in typical Karst regions in Southwest China[J]. Current Opinion in Environmental Science & Health, 2021, 23: 100284 吴才鑫, 赵宾, 陆奕茗, 等. 典型喀斯特区域土壤重金属污染特征、风险与修复研究进展[J]. 地球与环境, 2023, 51(5): 549-563 Wu C X, Zhao B, Lu Y M, et al. Characteristics, risks and remediation of heavy metal polluted soils in typical Karst regions: A review[J]. Earth and Environment, 2023, 51(5): 549-563(in Chinese)
王秋艳, 文雪峰, 魏晓, 等. 碳酸盐岩风化和成土过程的重金属迁移富集机理初探及环境风险评价[J]. 地球与环境, 2022, 50(1): 119-130 Wang Q Y, Wen X F, Wei X, et al. Heavy metal migration and enrichment mechanism and the environmental risks during the weathering and soil formation of carbonate rocks[J]. Earth and Environment, 2022, 50(1): 119-130(in Chinese)
Wang E L, Zhou Y, Liang Y, et al. Rice flowering improves the muscle nutrient, intestinal microbiota diversity, and liver metabolism profiles oftilapia (Oreochromis niloticus) in rice-fish symbiosis[J]. Microbiome, 2022, 10(1): 231 Zhang W Y, Xu M S, Lu J W, et al. Integrated rice-aquatic animals culture systems promote the sustainable development of agriculture by improving soil fertility and reducing greenhouse gas emissions[J]. Field Crops Research, 2023, 299: 108970 Wang R, Ma W W, Wu D, et al. Soil bacterial community composition in rice-turtle coculture systems with different planting years[J]. Scientific Reports, 2023, 13(1): 22708 Li Y F, Wu T Y, Wang S D, et al. Developing integrated rice-animal farming based on climate and farmers choices[J]. Agricultural Systems, 2023, 204: 103554 Xie J, Hu L L, Tang J J, et al. Ecological mechanisms underlying the sustainability of the agricultural heritage rice-fish coculture system[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(50): E1381-E1387 Wan N F, Li S X, Li T, et al. Ecological intensification of rice production through rice-fish co-culture[J]. Journal of Cleaner Production, 2019, 234: 1002-1012 Ahmed N, Hornbuckle J, Turchini G M. Blue-green water utilization in rice-fish cultivation towards sustainable food production[J]. Ambio, 2022, 51(9): 1933-1948 于秀娟, 郝向举, 党子乔, 等. 中国稻渔综合种养产业发展报告(2023)[J]. 中国水产, 2023, 573(8): 19-26 Yu X J, Hao X J, Dang Z Q, et al. Report on the development of rice and fishery integrated breeding industry in China (2023)[J]. Aquarium, 2023, 573(8): 19-26(in Chinese)
胡锦丽, 王益海, 张显波, 等. 贵州传统稻渔综合种养发展现状及建议[J]. 贵州畜牧兽医, 2022, 46(5): 8-11 Hu J L, Wang Y H, Zhang X B, et al. Current situation and suggestions on the development of traditional rice and fishery integrated planting and breeding in Guizhou[J]. Guizhou Journal of Animal Husbandry & Veterinary Medicine, 2022, 46(5): 8-11(in Chinese)
顾永忠. 从江县稻鱼鸭共生系统保护与传统农业发展对策[J]. 耕作与栽培, 2009(5): 1-4, 9 Gu Y Z. Protection of rice-fish-duck symbiosis system and development countermeasures of traditional agriculture in Congjiang County[J]. Tillage and Cultivation, 2009(5): 1-4, 9(in Chinese)
生态环境部. 土壤pH值的测定电位法: HJ 962—2018[S]. 北京: 中国环境科学出版社, 2018 张少彬, 冯钟钟. 重铬酸钾容量法测定广东省部分地区土壤中有机质含量的研究[J]. 广东化工, 2023, 50(4): 189-191 , 213
阎海鱼, 冯新斌, 李仲根, 等. 半封闭溶样冷原子荧光测定鱼体中总汞分析方法的建立[J]. 地球与环境, 2005, 33(1): 89-92 Yan H Y, Feng X B, Li Z G, et al. Amethological development in measuring total mercury in fish using semi-closed digestion and CVAFS[J]. Earth and Environment, 2005, 33(1): 89-92(in Chinese)
郑伟, 冯新斌, 李广辉, 等. 硝酸水浴消解-冷原子荧光光谱法测定植物中的总汞[J]. 矿物岩石地球化学通报, 2006, 25(3): 285-287 Zheng W, Feng X B, Li G H, et al. Determination of total mercury in plants by cold atomic fluorescence spectrometry with nitric acid water bath digestion[J]. Bulletin of Mineralogy, 2006, 25(3): 285-287(in Chinese)
李仲根, 冯新斌, 何天容, 等. 王水水浴消解-冷原子荧光法测定土壤和沉积物中的总汞[J]. 矿物岩石地球化学通报, 2005, 24(2): 140-143 Li Z G, Feng X B, He T R, et al. Determination of total mercury in soil and sediment by aquaregia digestion in the water bath coupled with cold vapor atom fluorescence spectrometry[J]. Bulletin of Mineralogy, 2005, 24(2): 140-143(in Chinese)
仇广乐, 冯新斌, 梁琏, 等. 溶剂萃取-水相乙基化衍生GC-CVAFS联用测定苔藓样品中的甲基汞[J]. 分析测试学报, 2005, 24(1): 29-32 Qiu G Y, Feng X B, Liang L, et al. Determination of methylmercury in moss by ethylation-gas chromatography-cold vapor atomic fluorescence spectrometry with solvent extraction[J]. Journal of Instrumental Analysis, 2005, 24(1): 29-32(in Chinese)
阎海鱼, 冯新斌, Liang Lian, 等. GC-CVAFS法测定鱼体内甲基汞的分析方法研究[J]. 分析测试学报, 2005, 24(6): 78-80 Yan H Y, Feng X B, Liang L, et al. Determination of methyl mercury in fish using GC- CVAFS[J]. Journal of Instrumental Analysis, 2005, 24(6): 78-80(in Chinese)
何天容, 冯新斌, 戴前进, 等. 萃取-乙基化结合GC-CVAFS法测定沉积物及土壤中的甲基汞[J]. 地球与环境, 2004, 32(2): 83-86 He T R, Feng X B, Dai Q J, et al. Determination of methyl mercury in sediments and soils by GC-CVAFS after aqueous phase ethylation[J]. Earth and Environment, 2004, 32(2): 83-86(in Chinese)
Ferreira S L C, da Silva J B, dos Santos I F, et al. Use of pollution indices and ecological risk in the assessment of contamination from chemical elements in soils and sediments: Practical aspects[J]. Trends in Environmental Analytical Chemistry, 2022, 35: e00169 Hakanson L. An ecological risk index for aquatic pollution control. A sedimentological approach[J]. Water Research, 1980, 14(8): 975-1001 Ai L H, Ma B, Shao S W, et al. Heavy metals in Chinese freshwater fish: Levels, regional distribution, sources and health risk assessment[J]. Science of the Total Environment. 2022, 853: 158455 Xu X H, Han J L, Pang J, et al. Methylmercury and inorganic mercury in Chinese commercial rice: Implications for overestimated human exposure and health risk[J]. Environmental Pollution (Barking, Essex), 2020, 258: 113706 United States Environmental Protection Agency. Methylmercury (MeHg) CASRN 22967-92-6|DTXSID90241982021[R]. Washington DC: United States Environmental Protection Agency, 2021 Felix C S A, Pereira Junior J B, da Silva Junior J B, et al. Determination and human health risk assessment of mercury in fish samples[J]. Talanta, 2022, 247: 123557 童倩倩, 李莉婕, 韩峰, 等. 基于GIS的贵州省稻田土壤养分及pH时空演变特征[J]. 西南农业学报, 2017, 30(5): 1121-1126 Tong Q Q, Li L J, Han F, et al. Temporal and spatial evolution characteristics of paddy soil nutrients and pH based on GIS[J]. Southwest China Journal of Agricultural Sciences, 2017, 30(5): 1121-1126(in Chinese)
黄会前, 张慧, 胡震, 等. 贵州山区耕地土壤有机质及pH的空间分布与影响因素研究[J]. 西南农业学报, 2023, 36(11): 2473-2479 Huang H Q, Zhang H, Hu Z, et al. Spatial distribution and influencing factors of arable soil organic matter and pH in mountainous areas of Guizhou[J]. Southwest China Journal of Agricultural Sciences, 2023, 36(11): 2473-2479(in Chinese)
刘南婷, 刘鸿雁, 吴攀, 等. 典型喀斯特地区土壤重金属累积特征及环境风险评价[J]. 农业资源与环境学报, 2021, 38(5): 797-809 Liu N T, Liu H Y, Wu P, et al. Accumulation characteristics and environmental risk assessment of heavy metals in typical Karst soils[J]. Journal of Agricultural Resources and Environment, 2023, 38(5): 797-809(in Chinese)
窦韦强, 安毅, 秦莉, 等. 土壤pH对汞迁移转化的影响研究进展[J]. 农业资源与环境学报, 2019, 36(1): 1-8 Dou W Q, An Y, Qin L, et al. Research progress on effects of soil pH on migration and transformation of mercury[J]. Journal of Agricultural Resources and Environment, 2019, 36(1): 1-8(in Chinese)
Jiang T, Chen X S, Wang D Y, et al. Dynamics of dissolved organic matter (DOM) in a typical inland lake of the Three Gorges Reservoir area: Fluorescent properties and their implications for dissolved mercury species[J]. Journal of Environmental Management, 2018, 206: 418-429 孟博, 胡海燕, 李平, 等. 稻田生态系统汞的形态转化及同位素分馏[J]. 矿物岩石地球化学通报, 2020, 39(1): 12-23 , 13-14 Meng B, Hu H Y, Li P, et al. Transformation and stable isotope fractionation of mercury in the rice paddy ecosystem[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2020, 39(1): 12-23, 13-14
王碧莹, 李振函, 李海岗, 等. 黄河口国家公园湿地土壤重金属污染评价[J]. 济南大学学报(自然科学版), 2024, 38(3): 267-273 Wang B Y, Li Z H, Li H G, et al. Evaluation of soil pollution caused by heavy mental in wetland of the Yellow River estuary national park[J]. Journal of University of Jinan (Science and Technology), 2024, 38(3): 267-273(in Chinese) Zhang H, Feng X B, Larssen T, et al. Bioaccumulation of methylmercury versus inorganic mercury in rice (Oryza sativa L.) grain[J]. Environmental Science & Technology, 2010, 44(12): 4499-4504 Yang Q, Yang Z F, Zhang Q Z, et al. Ecological risk assessment of Cd and other heavy metals in soil-rice system in the Karst areas with high geochemical background of Guangxi, China[J]. Science China Earth Sciences, 2021, 64(7): 1126-1139 李平, 冯新斌, 仇广乐. 贵州汞矿区居民食用大米的甲基汞暴露及健康风险评价[J]. 生态学杂志, 2011, 30(5): 914-921 Li P, Feng X B, Qiu G Y. Methylmercury exposure through rice consumption and its health risk assessment for the residents in Guizhou mercury mining areas[J]. Chinese Journal of Ecology, 2011, 30(5): 914-921(in Chinese)
Zheng N, Wang Q C, Zheng D M. Health risk of Hg, Pb, Cd, Zn, and Cu to the inhabitants around Huludao Zinc Plant in China via consumption of vegetables[J]. Science of the Total Environment, 2007, 383(1/2/3): 81-89 马宏宏, 彭敏, 刘飞, 等. 广西典型碳酸盐岩区农田土壤-作物系统重金属生物有效性及迁移富集特征[J]. 环境科学, 2020, 41(1): 449-459 Ma H H, Peng M, Liu F, et al. Bioavailability, translocation, and accumulation characteristic of heavy metals in a soil-crop system from a typical carbonate rock area in Guangxi, China[J]. Environmental Science, 2020, 41(1): 449-459(in Chinese)
Trudel M, Rasmussen J B. Predicting mercury concentration in fish using mass balance models[J]. Ecological Applications, 2001, 11(2): 517 Zhou Y L, Xie Q, Wang Y M, et al. Causes of low mercury levels in fish from the Three Gorges Reservoir, China[J]. Journal of Hazardous Materials, 2024, 464: 132930 Sánchez-Fortún M, Carrasco J L, Díez S, et al. Temporal mercury dynamics throughout the rice cultivation season in the Ebro Delta (NE Spain): An integrative approach[J]. Environmental Research, 2024, 250: 118555 Wang J X, Shan Q, Liang X M, et al. Levels and human health risk assessments of heavy metals in fish tissue obtained from the agricultural heritage rice-fish-farming system in China[J]. Journal of Hazardous Materials, 2020, 386: 121627 荆敏. 脂肪酸示踪典型水生生态系统食物网汞的传输积累[D]. 北京: 中国科学院大学, 2020: 78 Jing M. Fatty acids trace mercury transport and accumulation in food webs of typical aquatic ecosystems[D]. Beijing: University of Chinese Academy of Sciences, 2020: 78(in Chinese) Feng X B, Meng B, Yan H Y, et al. Biogeochemical Cycle of Mercury in Reservoir Systems in Wujiang River Basin, Southwest China[M]. Beijing: Science Press, 2018: 366-369 -

计量
- 文章访问数: 652
- HTML全文浏览数: 652
- PDF下载数: 145
- 施引文献: 0