2021—2022年夏季滦河口—北戴河海域浮游植物群落结构及年际变化研究
Phytoplankton Community and Annual Variations in the Luanhe-Beidaihe Coastal Waters in the Summers of 2021-2022
-
摘要: 滦河口—北戴河海域具有重要的海洋生态系统保护价值和经济社会发展服务功能,近年来面临较大赤潮灾害风险。浮游植物是引发赤潮的主要生物类群,阐明浮游植物群落空间、年际变化及环境驱动关系,对认识赤潮发生机制,防范生态风险具有重要意义。本研究围绕滦河口—北戴河海域于2021年和2022年夏季开展2个航次调查环境因子和网采浮游植物群落。结果表明,共鉴定得到浮游植物3门37属87种,以硅藻为主,甲藻和金藻较少。2021年浮游植物平均丰度(1 671.16×104 cells·m-3)较2022年(147.81×104 cells·m-3)高一个数量级,但Shannon-Wiener多样性指数和Pielou均匀度指数平均值(分别为2.35和0.55)均低于2022年(分别为2.73和0.64)。2021年优势种主要为旋链角毛藻(Chaetoceros curvisetus)、中肋骨条藻(Skeletonema costatum)等,2022年主要为距端假管藻(Pseudosolenia calcar-avis)、大洋角管藻(Cerataulina pelagica)等。聚类分析表明,2次调查浮游植物群落均大致以39.55°N~39.65°N为界分为北侧、南侧海域。Spearman相关性和冗余分析表明,氮磷比、悬浮颗粒物和扇贝滤食是影响2021年浮游植物群落空间变化的关键因子,2022年则为盐度、磷酸盐。浮游植物丰度基本为波动年际变化,降雨、入海水量、种间竞争等是其年际变化的主要影响因素。浮游植物优势种基本为广温广盐物种,2013年后中肋骨条藻多次成为主要优势种,可能与降雨量和入海水量增加以及氮磷比降低有关,2022年距端假管藻、大洋角管藻等暖水种成为主要优势种,与当年夏季出现海洋热浪有关。滦河口—北戴河海域赤潮监测工作宜重点关注降水、营养盐浓度及比例的影响。Abstract: The Luanhe-Beidaihe coastal waters are of significant importance for marine ecosystem protection and economic-social development. Nevertheless, in recent years, they have been imperiled by the recurrent occurrence of red tides. Phytoplankton, being a major inducer of red tides, understanding the spatial and annual dynamics of its community and the driving environmental forces is essential for deciphering red tide mechanisms and averting ecological disasters. In this study, two surveys were conducted in the summers of 2021 and 2022 to gather environmental and net-phytoplankton data. A total of 87 phytoplankton species from 3 phyla and 37 genera were identified, predominantly diatoms, with relatively fewer dinoflagellates and chrysophytes. The average abundance of phytoplankton in 2021 (1 671.16×104 cells·m-3) was an order of magnitude higher than in 2022 (147.81×104 cells·m-3), while the Shannon-Wiener diversity and Pielou evenness indices were lower in 2021 (2.35 and 0.55, respectively) than in 2022 (2.73 and 0.64, respectively). In 2021, Chaetoceros curvisetus and Skeletonema costatum were the dominant species, and in 2022, Pseudosolenia calcar-avis and Cerataulina pelagica took the lead. Cluster analysis showed similar patterns in both years, with the northern and southern areas clustering separately around 39.55°N~39.65°N. Spearman correlation and redundancy analysis indicated that in 2021, nitrogen-to-phosphorus ratio (N/P), suspended particulate matter, and scallop filtering were key spatial influencers, and in 2022, salinity and dissolved inorganic phosphorus played principal roles. The annual phytoplankton abundance fluctuated, largely related to precipitation, river discharge, and interspecific competition, among others. The dominant species were mainly eurythermal and euryhaline. Since 2013, S. costatum’s repeated dominance may stem from increased precipitation, river discharge, and a lower N/P. The prevalence of warm water species like P. calcar-avis and C. pelagica in 2022 might be due to the summer marine heatwave. For red tide monitoring in the Luanhe-Beidaihe coastal waters, more focus should be on precipitation, nutrient levels, and their ratios.
-
Key words:
- Luanhe-Beidaihe /
- phytoplankton /
- spatial variation /
- annual variation /
- environmental factors
-
-
FIELD C B, BEHRENFELD M J, RANDERSON J T, et al. Primary production of the biosphere: integrating terrestrial and oceanic components[J]. Science, 1998, 281(5374): 237-240. REYNOLDS C S. The ecology of phytoplankton[M]. Cambridge, UK: Cambridge University Press, 2006: 1-38. LALLI C M, PARSONS T R. Biological oceanography: an introduction[M]. 2nd ed. Oxford: Butterworth-Heinemann, 1997: 39-72. 孙松. 中国区域海洋学-生物海洋学[M]. 北京: 海洋出版社, 2012: 1-488. 陈楠生, 黄海龙. 中国海洋浮游植物和赤潮物种的生物多样性研究进展(一): 渤海[J]. 海洋与湖沼, 2021, 52(2): 346-395. CHEN N S, HUANG H L. Advances in the study of biodiversity of phytoplankton and red tide species in China(Ⅰ): The Bohai Sea[J]. Oceanologia et limnologia sinica, 2021, 52(2): 346-395.
刘亚柳. 昌黎黄金海岸国家级自然保护区范围调整的原因、影响及发展方向[J]. 环境与发展, 2019, 31(1): 212-213. LIU Y L. The causes, impacts and development direction of the adjustment of the Changli gold coast national nature reserve[J]. Environment and development, 2019, 31(1): 212-213.
徐雯佳. 基于高分卫星影像的秦皇岛近海浮筏养殖分布遥感监测[J]. 河北渔业, 2020(4): 32-34, 63. XU W J. Remote sensing monitoring of floating raft culture distribution in Qinhuangdao offshore based on high-resolution satellite images[J]. Hebei fisheries, 2020(4): 32-34, 63.
河北省自然资源厅. 2022年河北省海洋灾害公报[R]. 石家庄: 河北省自然资源厅, 2023: 9-10 WANG H Z, ZHANG H Y, WEI H, et al. Temporal variations of the two oxygen depleted zones in the Bohai Sea[J]. Frontiers in marine science, 2023, 10: 1247579. LI Z J, WAN L Y, LIU Y, et al. Analysis of marine heatwaves in China’s coastal seas and adjacent offshore waters[J]. Atmosphere, 2023, 14(12): 1738. 张万磊, 马新, 张永丰, 等. 2000年~2016年秦皇岛海域赤潮特征分析[J]. 海洋湖沼通报, 2020, 42(5): 48-55. ZHANG W L, MA X, ZHANG Y F, et al. An analysis of red tide characteristics in Qinhuangdao coastal seawater[J]. Transactions of oceanology and limnology, 2020, 42(5): 48-55.
LI X Y, YU R C, RICHARDSON A J, et al. Marked shifts of harmful algal blooms in the Bohai Sea linked with combined impacts of environmental changes[J]. Harmful algae, 2023, 121: 102370. 徐金涛, 姚远, 杨雯, 等. 2022年秦皇岛近岸海域赤潮成因初探[J]. 应用生态学报, 2024, 35(3): 817-826. XU J T, YAO Y, YANG W, et al. Preliminary investigation on the causes of red tides in Qinhuangdao coastal areas in 2022[J]. Chinese journal of applied ecology, 2024, 35(3): 817-826.
苏万磊. 基于Mann-Kendall的秦皇岛市降水多时间尺度分析[J]. 水利科技与经济, 2020, 26(11): 23-26. 傅圆圆, 杨超, 张坤兰, 等. 河北省沿岸表层温盐特征分析[J]. 海洋环境科学, 2022, 41(1): 94-98. FU Y Y, YANG C, ZHANG K L, et al. Characteristics of sea surface temperature and salinity at tidal gauge stations along Hebei coast[J]. Marine environmental science, 2022, 41(1): 94-98.
赵骞, 陈玥, 陈元, 等. 秦皇岛海域海流特征及规模化养殖对其影响的观测研究[J]. 海洋学报, 2019, 41(6): 23-36. ZHAO Q, CHEN Y, CHEN Y, et al. Current characteristics and its response to large-scale mariculture in Qinhuangdao coastal area based on in situ observation[J]. Haiyang Xuebao, 2019, 41(6): 23-36.
国家海洋局. 海洋监测规范第4部分: 海水分析: GB/T 17378.4—2007)[S]. 北京: 中国标准出版社, 2008: 57-120 国家海洋局. 海洋监测规范第7部分: 近海污染生态调查和生物监测: GB/T 17378.7—2007[S]. 北京: 中国标准出版社, 2008: 3-12 钱树本. 海藻学[M]. 青岛: 中国海洋大学出版社, 2014: 1-822. 杨世民, 董树刚. 中国海域常见浮游硅藻图谱[M]. 青岛: 中国海洋大学出版社, 2006: 1-267. 郭皓. 中国近海赤潮生物图谱[M]. 北京: 海洋出版社, 2004: 1-107. 魏君, 韩丽君, 唐小坤, 等. 滦河口-北戴河海域夏、秋季浮游植物群落时空变化及影响因素[J]. 生态毒理学报, 2024, 19(6): 247-260. WEI J, HAN L J, TANG X K, et al. Temporal and spatial variations of phytoplankton community and their controlling factors in the Luanhe-Beidaihe coastal waters in summer and autumn[J]. Asian journal of ecotoxicology, 2024, 19(6): 247-260.
OKSANEN J, BLANCHET F G, FRIENDLY M, et al. Vegan: community ecology package[EB/OL].[2024-10-24]. https://CRAN.R-project.org/package=vegan, 2017 河北省水利厅. 2001-2022年河北省水资源公报[R]. 石家庄: 河北省水利厅, 2022: 1-41. 梁晓林, 杨阳, 王玉良, 等. 昌黎生态监控区夏季浮游植物群落年际变化特征分析[J]. 环境科学, 2015, 36(4): 1317-1325. LIANG X L, YANG Y, WANG Y L, et al. Yearly changes of phytoplankton community in the ecology-monitoring area of Changli, Hebei in summer[J]. Environmental science, 2015, 36(4): 1317-1325.
李莉, 陈武军, 张永丰, 等. 滦河口-北戴河海域夏季浮游植物群落变化研究[J]. 海洋环境科学, 2013, 32(6): 896-901. LI L, CHEN W J, ZHANG Y F, et al. Variation characteristics of phytoplankton communities structure in Luanhe-Beidaihe estuary in summer[J]. Marine environmental science, 2013, 32(6): 896-901.
CHEN Y, WANG L, LIU Z L, et al. Biodiversity and interannual variation of harmful algal bloom species in the coastal sea of Qinhuangdao, China[J]. Life, 2023, 13(1): 192. KLAUSMEIER C A, LITCHMAN E, DAUFRESNE T, et al. Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton[J]. Nature, 2004, 429(6988): 171-174. 刘东艳, 孙军, 陈宗涛, 等. 不同氮磷比对中肋骨条藻生长特性的影响[J]. 海洋湖沼通报, 2002, 24(2): 39-44. LIU D Y, SUN J, CHEN Z T, et al. Effect of N/P ratio on the growth of a red tide diatom Skeletonema costatum[J]. Transaction of oceanology and limnology, 2002, 24(2): 39-44.
孙军, 刘东艳, 陈宗涛, 等. 不同氮磷比率对青岛大扁藻、新月柱鞘藻和米氏凯伦藻生长影响及其生存策略研究[J]. 应用生态学报, 2004, 15(11): 2122-2126. SUN J, LIU D Y, CHEN Z T, et al. Growth of Platymonas helgolandica var. tsingtaoensis, Cylindrotheca closterium and Karenia mikimotoi and their survival strategies under different N/P ratios[J]. Chinese journal of applied ecology, 2004, 15(11): 2122-2126.
胡章喜, 徐宁, 李爱芬, 等. 氮磷比率对3种典型赤潮藻生长的影响[J]. 水生生物学报, 2008, 32(4): 482-487. HU Z X, XU N, LI A F, et al. Effects of different N∶P ratios on the growth of pseudo-Nitzschia pungens, Prorocentrum donghaiense and Phaeocystis globosa[J]. Acta hydrobiologica sinica, 2008, 32(4): 482-487.
岳建权, 姜玲玲, 王林, 等. 不同季节秦皇岛近岸水体颗粒物粒径分布特征研究[J]. 海洋环境科学, 2022, 41(4): 586-594. YUE J Q, JIANG L L, WANG L, et al. Characteristics of particle size distribution in the coastal waters of Qinhuangdao during different seasons[J]. Marine environmental science, 2022, 41(4): 586-594.
WANG L, WANG X, MENG Q H, et al. Retrieval and spatiotemporal variation of total suspended matter concentration using a MODIS-derived hue angle in the coastal waters of Qinhuangdao, China[J]. Frontiers in marine science, 2024, 11: 1434225. 江志兵, 陈全震, 寿鹿, 等. 象山港人工鱼礁区的网采浮游植物群落组成及其与环境因子的关系[J]. 生态学报, 2012, 32(18): 5813-5824. JIANG Z B, CHEN Q Z, SHOU L, et al. Community composition of net-phytoplankton and its relationship with the environmental factors at artificial reef area in Xiangshan Bay[J]. Acta ecologica sinica, 2012, 32(18): 5813-5824.
孙振皓, 盛留洋, 江新琴, 等. 2017年夏季长江口浮游植物暖水种增多现象分析[J]. 海洋学研究, 2021, 39(4): 82-90. SUN Z H, SHENG L Y, JIANG X Q, et al. An analysis on the phenomenon of increasing warm-water species abundance of phytoplankton in the Changjiang (Yangtze River) Estuary during summer of 2017[J]. Journal of marine sciences, 2021, 39(4): 82-90.
栾青杉, 康元德, 王俊. 黄海浮游植物群落的长期变化(1985—2015)[J]. 中国水产科学, 2020, 27(1): 1-12. LUAN Q S, KANG Y D, WANG J. Long-term changes within the phytoplankton community in the Yellow Sea (1985–2015)[J]. Journal of fishery sciences of China, 2020, 27(1): 1-12.
马旺. 唐山京唐港电厂温排水对浮游植物群落的影响[J]. 安徽农业科学, 2022, 50(3): 69-73. MA W. Influence of Tangshan Jingtanggang power plant’s thermal drainage on marine phytoplankton community[J]. Journal of Anhui agricultural sciences, 2022, 50(3): 69-73.
THESSEN A E, DORTCH Q, PARSONS M L, et al. Effect of salinity on pseudo-Nitzschia species (Bacillariophyceae) growth and distribution1[J]. Journal of phycology, 2005, 41(1): 21-29. 徐宁. 中国沿海典型赤潮藻的生态位研究[D]. 广州: 暨南大学, 2006: 26-29. 许歆. 秦皇岛近海浮游植物群落结构变化及其组学研究[D]. 青岛: 中国科学院大学, 2017: 27-60. NING X R, LIN C L, SU J L, et al. Long-term environmental changes and the responses of the ecosystems in the Bohai Sea during 1960–1996[J]. Deep sea research part Ⅱ: topical studies in oceanography, 2010, 57(11/12): 1079-1091. 雷蕾, 姚鹏. 抑食金球藻褐潮环境影响因素研究进展[J]. 海洋环境科学, 2016, 35(4): 635-640. LEI L, YAO P. Advances in the environmental factors of brown tide of Aureococcus anophagefferens[J]. Marine environmental science, 2016, 35(4): 635-640.
HE Y K, CHEN Z Y, FENG X, et al. Daily samples revealing shift in phytoplankton community and its environmental drivers during summer in Qinhuangdao coastal area, China[J]. Water, 2022, 14(10): 1625. WANG Y B, LIU Z L, QI Y P, et al. Response of phytoplankton communities to environmental changes in the Bohai Sea in late summer (2011–2020)[J]. Acta oceanologica sinica, 2024, 43(10): 107-120. 陈楠生, 崔宗梅, 徐青. 中国海洋浮游植物和赤潮物种的生物多样性研究进展(四): 长江口[J]. 海洋与湖沼, 2021, 52(2): 402-452. CHEN N S, CUI Z M, XU Q. Advances in the study of biodiversity of phytoplankton and red tide species in China(Ⅳ): the Changjiang estuary[J]. Oceanologia et limnologia sinica, 2021, 52(2): 402-452.
TAN H J, CAI R S, BAI D P, et al. Causes of 2022 summer marine heatwave in the East China Seas[J]. Advances in climate change research, 2023, 14(5): 633-641. 郭世安, 张海彦, 魏皓, 等. 2013—2019年渤海夏季高温现象及机制分析[J]. 海洋与湖沼, 2022, 53(2): 269-277. GUO S A, ZHANG H Y, WEI H, et al. Summer high temperature phenomenon and its mechanisms in the Bohai Sea from 2013 to 2019[J]. Oceanologia et limnologia sinica, 2022, 53(2): 269-277.
YUAN C Y, KUANG X D, XU J B, et al. Phase variations of the summer and winter seasons in the Bohai Sea during the last four decades[J]. Frontiers in marine science, 2023, 10: 1095792. 蔡榕硕, 谭红建. 中国近海变暖和海洋热浪演变特征及气候成因研究进展[J]. 大气科学, 2024, 48(1): 121-146. CAI R S, TAN H J. Progress on the evolutionary characteristics and climatic causes for warming and marine heatwaves in the coastal China Seas[J]. Chinese journal of atmospheric sciences, 2024, 48(1): 121-146.
-

计量
- 文章访问数: 110
- HTML全文浏览数: 110
- PDF下载数: 46
- 施引文献: 0