济南冬春季室内空气PM2.5 中多环芳烃污染特征及健康风险评价

孟川平, 杨凌霄, 董灿, 鄢超, 袁琦, 姚兰, 杨飞, 王文兴. 济南冬春季室内空气PM2.5 中多环芳烃污染特征及健康风险评价[J]. 环境化学, 2013, 32(5): 719-725. doi: 10.7524/j.issn.0254-6108.2013.05.001
引用本文: 孟川平, 杨凌霄, 董灿, 鄢超, 袁琦, 姚兰, 杨飞, 王文兴. 济南冬春季室内空气PM2.5 中多环芳烃污染特征及健康风险评价[J]. 环境化学, 2013, 32(5): 719-725. doi: 10.7524/j.issn.0254-6108.2013.05.001
MENG Chuanping, YANG Lingxiao, DONG Can, YAN Chao, YUAN Qi, YAO Lan, YANG Fei, WANG Wenxing. Characteristics and health risk assessment of indoor PM2.5 polycyclic aromatic hydrocarbons (PAHs) in winter and spring in Jinan[J]. Environmental Chemistry, 2013, 32(5): 719-725. doi: 10.7524/j.issn.0254-6108.2013.05.001
Citation: MENG Chuanping, YANG Lingxiao, DONG Can, YAN Chao, YUAN Qi, YAO Lan, YANG Fei, WANG Wenxing. Characteristics and health risk assessment of indoor PM2.5 polycyclic aromatic hydrocarbons (PAHs) in winter and spring in Jinan[J]. Environmental Chemistry, 2013, 32(5): 719-725. doi: 10.7524/j.issn.0254-6108.2013.05.001

济南冬春季室内空气PM2.5 中多环芳烃污染特征及健康风险评价

  • 基金项目:

    科技部环保公益性行业科研专项(201009001-1)

    山东自主创新项目(2009TS024)

    山东省中青年科学家奖励基金(BS2010HZ010)资助.

Characteristics and health risk assessment of indoor PM2.5 polycyclic aromatic hydrocarbons (PAHs) in winter and spring in Jinan

  • Fund Project:
  • 摘要: 2010年冬春季,在济南典型室内环境(超市、办公室和餐厅)采集了PM2.5样品,并对其多环芳烃(PAHs)进行了分析.结果表明,采样期间办公室的PAHs平均浓度最高,为93.11 ng·m-3,超市和餐厅的PAHs平均浓度分别为42.97 ng·m-3和26.65 ng·m-3.超市和办公室的多环芳烃均以室外源(燃煤)为主,吸烟导致办公室轻环多环芳烃浓度升高,高于室外相应物种的浓度,餐厅的轻环多环芳烃和重环多环芳烃分别来源于室内烹饪和室外的机动车尾气.与室外相比,超市和办公室PAHs中的菲(Phe)和苯并荧蒽(BbkF)占总PAHs的比例较高,达到10%—15%,这与冬季室内使用中央空调取暖密不可分.超市、办公室和餐厅的毒性当量浓度值(BEQ)分别为7.05 ng·m-3、10.75 ng·m-3和0.75 ng·m-3.其中办公室的毒性当量浓度高于我国规定10 ng·m-3.超市,办公室和餐厅的PAHs暴露致终身肺癌风险度分别为0.6×10-3、0.9×10-3和6.5×10-5,均超过了世界卫生组织的建议值(10-5),超市和办公室的终身致癌健康风险高于美国最高法院规定的10-3的显著水平,说明生活在超市和办公室致癌风险高.
  • 加载中
  • [1] 时宗波,邵龙义,Jones P,等. 城市大气可吸入颗粒物对质粒 DNA 的氧化性损伤[J].科学通报,2004,49(7):673-678
    [2] 李金娟,邵龙义,杨书申,等. 可吸入颗粒物的健康效应机制[J].环境与健康杂志,2006,23(2):185-188
    [3] Jenkins P, Phillips T, Mulberg E, et al. Activity patterns of Californians: Use of and proximity to indoor pollutant sources [J].Atmospheric Environment, 1992, 26(12): 2141-2148
    [4] Jin Y, Ma X, Chen X, et al. Exposure to indoor air pollution from household energy use in rural China: The interaction of technology, behavior, and knowledge in health risk management [J]. Social Science and Medicine, 2006, 62(12):3161-3176
    [5] Wu J, Tang C, Zhuang Z. Effect of indoor air pollution related to traffic and fuel gas using for cooking on respiratory diseases in children and teenagers in urban area of Shanghai [J]. Journal of Environment and Health, 2001, 27(2): 244-247
    [6] Li C, Kang S, Chen P, et al. Personal fine particle and indoor CO in nomadic tents using open and chimney biomass stoves on the Tibetan Plateau [J]. Atmospheric Environment, 2012, 59: 207-213
    [7] Dong C, Yang L, Yan C, et al. Particle size distributions, PM2.5 concentrations and water-soluble inorganic ions in different public indoor environments: A case study in Jinan, China [J]. Frontiers of Environmental Science & Engineering, 2012: 1-11
    [8] Allen O, Dookeran M, Smith A, et al. Measurement of polycyclic aromatic hydrocarbons associated with size-segregated atmospheric aerosols in Massachusetts [J]. Environmental Science and Technology, 1996, 30: 1023-1031
    [9] Gundel A, Lee C, Mahanama M. Semivolatile and particulate polycyclic aromatic hydrocarbons in environmental tobacco smoke: Clean up, speciation and emission factors [J]. Atmospheric Environment, 1995, 29(14): 1719-1733
    [10] Hoek G, Kos G, Jeroen H, et al. Indoor and outdoor relationship of particle number and mass in four European cities [J]. Atmospheric Environment, 2008, 42 (2):156-169
    [11] Castro D, Klara S, Cristina D, et al. Polycyclic aromatic hydrocarbons in gas and particulate phases of indoor environments influenced by tobacco smoke: Levels, phase distributions, and health risks [J]. Atmospheric Environment, 2011, 45(10): 1799-1808
    [12] Elisabeth G. Source specificity and atmospheric processing of airborne PAHs: Implications for source appointment [J]. Atmospheric Environment, 2008, 42 (35):8139-8149
    [13] Larsen J C, Larsen P B. Chemical carcinogens//Hester R, Harrison R. Air pollution and health[M]. Cambridge, UK: The Royal Society of Chemistry, 1998: 33-56
    [14] 曾凡刚,王关玉,田健,等.北京市部分地区大气气溶胶中多环芳烃污染特征及污染源探讨[J].环境科学学报,2002,22(3):284-288
    [15] 黄鹂鸣.南京市大气气溶胶污染水平调查及对其中部分有机物的分析研究.南京:南京大学硕士论文,2002
    [16] 郭红连,陆晨刚,余琦,等.上海大气可吸入颗粒物中多环芳烃的污染特征研究[J].复旦学报,2004,43(6):1107-1112
    [17] HalsallL C J, Coleman P J, Davis B J, et al. Polycyclic aromatic hydrocarbons in U.K. urban air [J]. Environment Science and Technology, 1994, 28: 2380-2386
    [18] Takeshi O, Takashi A, Masahiro F, et al. Spatial distribution and profiles of atmospheric polycyclic hydrocarbons in two industrial cities in Japan [J]. Environment Science Technology, 2004, 38: 49-55
    [19] Smith D J T, Harrison R M. Concentrations, trends and vehicle source profile of polynuclear aromatic hydrocarbons in the U.K. atmospheric [J]. Atmospheric Environment, 1996, 30(14): 2513-2525
  • 加载中
计量
  • 文章访问数:  1083
  • HTML全文浏览数:  1058
  • PDF下载数:  1165
  • 施引文献:  0
出版历程
  • 收稿日期:  2012-11-09

济南冬春季室内空气PM2.5 中多环芳烃污染特征及健康风险评价

  • 1.  山东大学环境研究院, 济南, 250100;
  • 2.  山东大学环境科学与工程学院, 济南, 250100;
  • 3.  中国环境科学研究院, 北京, 100012
基金项目:

科技部环保公益性行业科研专项(201009001-1)

山东自主创新项目(2009TS024)

山东省中青年科学家奖励基金(BS2010HZ010)资助.

摘要: 2010年冬春季,在济南典型室内环境(超市、办公室和餐厅)采集了PM2.5样品,并对其多环芳烃(PAHs)进行了分析.结果表明,采样期间办公室的PAHs平均浓度最高,为93.11 ng·m-3,超市和餐厅的PAHs平均浓度分别为42.97 ng·m-3和26.65 ng·m-3.超市和办公室的多环芳烃均以室外源(燃煤)为主,吸烟导致办公室轻环多环芳烃浓度升高,高于室外相应物种的浓度,餐厅的轻环多环芳烃和重环多环芳烃分别来源于室内烹饪和室外的机动车尾气.与室外相比,超市和办公室PAHs中的菲(Phe)和苯并荧蒽(BbkF)占总PAHs的比例较高,达到10%—15%,这与冬季室内使用中央空调取暖密不可分.超市、办公室和餐厅的毒性当量浓度值(BEQ)分别为7.05 ng·m-3、10.75 ng·m-3和0.75 ng·m-3.其中办公室的毒性当量浓度高于我国规定10 ng·m-3.超市,办公室和餐厅的PAHs暴露致终身肺癌风险度分别为0.6×10-3、0.9×10-3和6.5×10-5,均超过了世界卫生组织的建议值(10-5),超市和办公室的终身致癌健康风险高于美国最高法院规定的10-3的显著水平,说明生活在超市和办公室致癌风险高.

English Abstract

参考文献 (19)

目录

/

返回文章
返回