持久性有机污染物在大气与植物间交换过程研究进展

孙海峰, 朱亚先, 张勇. 持久性有机污染物在大气与植物间交换过程研究进展[J]. 环境化学, 2013, 32(5): 734-741. doi: 10.7524/j.issn.0254-6108.2013.05.003
引用本文: 孙海峰, 朱亚先, 张勇. 持久性有机污染物在大气与植物间交换过程研究进展[J]. 环境化学, 2013, 32(5): 734-741. doi: 10.7524/j.issn.0254-6108.2013.05.003
SUN Haifeng, ZHU Yaxian, ZHANG Yong. Research progress in the process of air-vegetation transfer of persistent organic pollutants (POPs)[J]. Environmental Chemistry, 2013, 32(5): 734-741. doi: 10.7524/j.issn.0254-6108.2013.05.003
Citation: SUN Haifeng, ZHU Yaxian, ZHANG Yong. Research progress in the process of air-vegetation transfer of persistent organic pollutants (POPs)[J]. Environmental Chemistry, 2013, 32(5): 734-741. doi: 10.7524/j.issn.0254-6108.2013.05.003

持久性有机污染物在大气与植物间交换过程研究进展

  • 基金项目:

    国家自然科学基金(21075102,21177102)

    国家自然科学基金(创新研究群体科学基金)(41121091)

    环境化学与生态毒理学国家重点实验室开放基金(KF2010-15)资助项目.

Research progress in the process of air-vegetation transfer of persistent organic pollutants (POPs)

  • Fund Project:
  • 摘要: 大气、植物间持久性有机物污染物 (POPs) 的交换行为是控制POPs进入食物链,及影响其全球范围内迁移、分布的重要环节.本文着重介绍了大气、植物间POPs交换过程方面的研究现状;总结了其影响因素,主要包括POPs本身的理化性质 (lgKOA)、植物特性 (叶片表面形态、脂质含量、表皮的可渗透性) 以及环境温度;提出了目前大气、植物间POPs交换过程研究中存在的部分问题,以及今后可能的发展方向.
  • 加载中
  • [1] Breivik K, Gioia R, Chakraborty P, et al. Are reductions in industrial organic contaminants emissions in rich countries achieved partly by export of toxic wastes [J]. Environmental Science and Technology, 2011, 45 (21): 9154-9160
    [2] Vlckova K, Hoffman J. A comparison of POPs bioaccumulation in Eisenia fetida in natural and artificial soils and the effects of aging [J]. Environmental Pollution, 2012, 160 (1): 49-56
    [3] Guo Y Y, Huo X, Wu K S, et al. Carcinogenic polycyclic aromatic hydrocarbons in umbilical cord blood of human neonates from Guiyu, China [J]. Science of the Total Environment, 2012, (427/428): 35-40
    [4] Trnovec T, Palkovicova L, Sovcikova E, et al. Analysis of the toxicogenomic effects of exposure to persistent organic pollutants (POPs) in Slovakian girls: Correlation between gene expression and disease risk [J]. Environment International, 2012, 39 (1): 188-199
    [5] Petro E M L, Covaci A, Leroy J L M R, et al. Occurrence of endocrine disrupting compounds in tissues and body fluids of Belgian dairy cows and its implications for the use of the cow as a model to study endocrine disruption [J]. Science of the Total Environment, 2010, 408 (22): 5423-5428
    [6] Xu Y, Zhang J, Li W, et al. Endocrine effects of sublethal exposure to persistent organic pollutants (POPs) on silver carp (Hypophthalmichthys molitrix) [J]. Environmental Pollution, 2002, 120 (3): 683-690
    [7] Rudel R A, Perovich L J. Endocrine disrupting chemicals in indoor and outdoor air [J]. Atmospheric Environment, 2009: 43 (1): 170-191
    [8] Pozo K, Harner T, Wania F, et al. Toward a global network for persistent organic pollutants in air: Results from the GAPS study [J]. Environmental Science and Technology, 2006, 40 (16): 4867-4873
    [9] Pozo K, Harner T, Lee S C, et al. Seasonally resolved concentrations of persistent organic pollutants in the global atmosphere from the first year of the GAPS study [J]. Environmental Science and Technology, 2009, 43 (3): 796-803
    [10] Jaward F M, Zhang G, Nam J J, et al. Passive air sampling of polychlorinated biphenyls, organochlorine compounds and polybrominated biphenyl ethers across Asia [J]. Environmental Science and Technology, 2005, 39 (22): 8638-8645
    [11] Jaward F M, Farrar N J, Harner T, et al. Passive air sampling of PCBs, PBDEs, and organochlorine pesticides across Europe [J]. Environmental Science and Technology, 2004, 38 (1): 34-41
    [12] Schuster J K, Gioia R, Breivik K, et al. Trends in European background air reflect reductions in primary emissions of PCBs and PBDEs [J]. Environmental Science and Technology, 2010, 44 (17): 6760-6766
    [13] 马万里, 李一凡, 孙德智, 等. 哈尔滨大气气相中多环芳烃的研究 [J]. 环境科学, 2009, 30 (11): 3167-3172
    [14] 高永飞, 王璞, 陈卫海, 等. 喜马拉雅山区葇籽草和棘豆样品中PCBs、PBDEs和PCDD/Fs的分析 [J]. 环境化学, 2012, 31 (1): 26-30
    [15] Wania F. Assessing the potential persistent organic chemicals for long-range transport and accumulation in polar regions [J]. Environmental Science and Technology, 2003, 37 (7): 1344-1351
    [16] Tamamura S, Sato T, Ota Y, et al. Long-range transport of polycyclic aromatic hydrocarbons (PAHs) from the eastern Asia continent to Kanazawa, Japan with Asian dust [J]. Atmospheric Environment, 2007, 41 (12): 2580-2593
    [17] 刘贝贝, 陈丽, 张勇. 典型多环芳烃在红树林沉积物上的吸附特性及影响因素 [J]. 环境化学, 2011, 30 (12): 2032-2040
    [18] Demircioglu E, Sofuoglu A, Odabasi M. Particle-phase dry deposition and air-soil gas exchange of polycyclic aromatic hydrocarbons (PAHs) in Izmir [J]. Journal of Hazardous Materials, 2011, 186 (1): 328-335
    [19] Nizzetto L, Perlinger J A. Climatic, biological and land cover controls on the exchange of gas-phase semivolatile chemical pollutants between forest canopies and the atmosphere [J]. Environmental Science and Technology, 2012, 46 (5): 2699-2707
    [20] 袁林喜, 祁士华. 鸟类对持久性有机污染物的定向传输作用研究进展 [J]. 环境化学, 2011, 30 (12): 1983-1992
    [21] 刘强, 陈荣, 邓瑜衡. 植物去除空气污染物的机理研究进展 [J]. 安全与环境工程, 2007, 14 (1): 24-27
    [22] Simonich S L, Hites R A. Importance of vegetation in removing polycyclic aromatic hydrocarbons from the atmosphere [J]. Nature, 1994, 370: 49-51
    [23] Horstmann M, McLachlan M S. Atmospheric deposition of semivolatile organic compounds to two forest canopies [J]. Atmospheric Environment, 1998, 32 (10): 1799-1809
    [24] Nizzetto L, Cassani C, Di Guardo A. Deposition of PCBs in mountains: The forest filter effect of different forest ecosystem types [J]. Ecotoxicology and Environmental Safety, 2006, 63 (1): 75-83
    [25] Choi S D, Staebler R M, Li H, et al. Depletion of gaseous polycyclic aromatic hydrocarbons by a forest canopy [J]. Atmospheric Chemistry and Physics, 2008, 8 (1): 4105-4113
    [26] Su Y, Wania F. Does the forest filter effect prevent semivolatile organic compounds from reaching the Arctic [J]. Environmental Science and Technology, 2005, 39 (18): 7158-7193
    [27] McLachlan M S, Horstmann M. Forests as filters of airborne organic pollutants: A model [J]. Environmental Science Technology, 1998, 32 (3): 413-420
    [28] Jaward F M, Guardo A D, Nizzetto L, et al. PCBs and selected organochlorine compounds in Italian mountain air: The influence of altitude and forest ecosystem type [J]. Environmental Science and Technology, 2005, 39 (10): 3455-3463
    [29] Tian X X, Liu J X, Zhou G Y, et al. Estimation of the annual scavenged amount of polycyclic aromatic hydrocarbons by forests in the Pearl River Delta of Southern China [J]. Environmental Pollution, 2008, 156 (2): 306-315
    [30] Wania F, McLachlan. Estimating the influence of forests on the overall fate of semivolatile organic compounds using a multimedia fate model [J]. Environmental Science and Technology, 2001, 35 (3): 582-590
    [31] McLachlan M S. Framework for the interpretation of measurement of SOCs in plants [J]. Environmental Science and Technology, 1999, 33 (11): 1799-1804
    [32] Liu X, Zhang G, Jones K C, et al. Compositional fractionation of polycyclic aromatic hydrocarbons (PAHs) in mosses (Hypnum plumaeformae WILS.) from the northern slope of Nanling Mountains, South China [J]. Atmospheric Environment, 2005, 39: 5490-5499
    [33] Komp P, McLachlan M S. Interspecies variability of the plant/air partitioning of polychlorinated biphenyls [J]. Environmental Science and Technology, 1997, 31 (10): 2944-2948
    [34] Bohme F, Welsch-Pausch K, McLachlan M S. Uptake of airborne semivolatile organic compounds in agricultural plants: Field measurements of interspecies variability [J]. Environmental Science and Technology, 1999, 33 (11): 1805-1813
    [35] Komp P, McLachlan M S. Influence of temperature on the plant/air partitioning of semivolatile organic compounds [J]. Environmental Science and Technology, 1997, 31 (3): 886-890
    [36] Yang X L, Jiang X, Yu G F, et al. Leaf-air transfer of organochlorine pesticide from three selected vegetables [J]. Environmental Pollution, 2007, 148 (2): 555-561
    [37] St-Amand A D, Mayer P M, Blais J M. Seasonal trends in vegetation and atmospheric concentrations of PAHs and PBDEs near a sanitary landfill [J]. Atmospheric Environment, 2008, 42 (13): 2948-2958
    [38] Tato L, Tremolada P, Ballabio C, et al. Seasonal and spatial variability of polychlorinated diphenyls (PCBs) in vegetation and cow milk from a high altitude pasture in the Italian Alps [J]. Environmental Pollution, 2011, 159 (10): 2656-2644
    [39] Liu G Q, Zhang G, Li J, et al. Spatial distribution and seasonal variations of polycyclic aromatic hydrocarbons (PAHs) using semi-permeable membrane devices (SPMD) and pine needles in the Pearl River Delta, South China [J]. Atmospheric Environment, 2006, 40: 3134-3143
    [40] Judy J D, Unrine J M, Rao W, et al. Bioavailability of gold nanomaterials to plants: Importance of particle size and surface coating [J]. Environmental Science and Technology, 2012, 46 (15): 8467-8474
    [41] 李美敏, 吴对林, 白云鹤. 纳米颗粒物采样技术及其在大气监测中的应用 [J]. 环境, 2009, (S1): 1-2
    [42] Wild E, Jones K C. Novel method for the direct visualization of in vivo nanomaterials and chemical interactions in plants [J]. Environmental Science Technology, 2009, 43 (14): 5290-5294
    [43] Nizzetto L, Pastore C, Liu X, et al. Accumulation parameters and seasonal trends for PCBs in temperate and boreal forest plant species [J]. Environmental Science and Technology, 2008, 42 (16): 5911-5916
    [44] Nizzetto L, Jarvis A, Brivio P A, et al. Seasonality of the air-forest canopy exchange of persistent organic pollutants [J]. Environmental Science and Technology, 2008, 42 (23): 8778-8783
    [45] Simonich S L, Hites R A. Vegetation-atmosphere partitioning of polycyclic aromatic hydrocarbons[J]. Environmental Science Technology, 1994, 28(5): 939-943
    [46] Bacci E, Calamari D, Gaggi C, et al. Bioconcention of organic of organic chemical vapors in plant leaves: Experimental measurements and correlation [J]. Environmental Science and Technology, 1990, 24 (6): 885-889
    [47] Komp P, Mclachlan M S. The kinetics and reversibility of the partitioning of polychlorinated biphenyls between air and ryegrass [J]. Science of the Total Environment, 2000, 250 (1/3): 63-71
    [48] Barber J L, Thomas G O, Jones K C. Study of plant-air transfer of PCBs from an evergreen shrub: Implications for mechanisms and modeling [J]. Environmental Science and Technology, 2003, 37 (17): 3838-3844
    [49] Maddalena R L, Mckone T E, Kado N Y. Exposure chamber measurements of mass transfer and partitioning at plant/air interface [J]. Environmental Science and Technology, 2002, 36 (16): 3577-3585
    [50] Kobayashi R, Cahill T, Okamoto R A, et al. Controlled exposure chamber study of uptake and clearance of airborne polycyclic aromatic hydrocarhons by wheat grain [J]. Environmental Science and Technology, 2007, 41 (22): 7934-7940
    [51] Wild E, Dent J, Thomas G O, et al. Direct observation of organic contaminants uptake, storage, and metabolism within plant root [J]. Environmental Science and Technology, 2005, 3 (10): 3695-3702
    [52] Keyte I, Wild E, Dent J, et al. Investigating the foliar uptake and with-leaf migration of phenanthrene by moss (Hypnum cupressiforme) using two-photo excitation microscopy with autofluorescence [J]. Environmental Science and Technology, 2009, 43 (15): 5755-5761
    [53] 沈菲, 朱利中. 钢铁工业区附近农田蔬菜PAHs的浓度水平及分布 [J]. 环境科学, 2007, 28 (3): 669-672
    [54] 董亮, 张烃, 黄业茹. 持久性有机物污染物——21世纪中国面对的新型环境问题 [J]. 环境管理,2012,8(11):27-29
    [55] Wang P, Du K Z, Zhu Y X, et al. A novel analytical approach for investigation of anthracene adsorption onto mangrove leaves [J]. Talanta, 2008, 76 (5): 1177-1182
    [56] 杜克钊, 朱亚先, 王萍, 等. 固体表面荧光法测定吸附于白骨壤和木榄叶片上的蒽 [J]. 分析试验室, 2009, 28(4): 81-83
    [57] 陈丽, 王萍, 刘贝贝, 等. 光纤荧光法对吸附于红树叶片表面上荧蒽的测定 [J]. 分析测试学报, 2009, 28 (11): 1299-1303
    [58] Chen L, Wang P, Liu J B, et al. In situ monitoring the photolysis of fluoranthene adsorbed on mangrove leaves using fiber-optic fluorimetry [J]. Journal of Fluorescence, 2011, 21 (2): 765-773
    [59] Chen L, Liu B B, Zhang Y. In situ real-time simultaneous determination the photolysis of muti-component PAHs adsorbed on the leaf surface of Kandelia candel seedlings [J]. Talanta, 2010, 83 (2): 324-331
    [60] Barber J L, Thomas G, Bailey R, et al. Exchange of polychlorinated biphenyls (PCBs) and polychlorinated naphthalenes (PCNs) between air and a mixed pasture sward [J]. Environmental Science and Technology, 2004, 38 (14): 3892-3900
  • 加载中
计量
  • 文章访问数:  1212
  • HTML全文浏览数:  1146
  • PDF下载数:  542
  • 施引文献:  0
出版历程
  • 收稿日期:  2012-08-10

持久性有机污染物在大气与植物间交换过程研究进展

  • 1.  厦门大学近海海洋环境科学国家重点实验室, 环境科学研究中心, 厦门, 361005;
  • 2.  厦门大学化学化工学院化学系, 厦门, 361005
基金项目:

国家自然科学基金(21075102,21177102)

国家自然科学基金(创新研究群体科学基金)(41121091)

环境化学与生态毒理学国家重点实验室开放基金(KF2010-15)资助项目.

摘要: 大气、植物间持久性有机物污染物 (POPs) 的交换行为是控制POPs进入食物链,及影响其全球范围内迁移、分布的重要环节.本文着重介绍了大气、植物间POPs交换过程方面的研究现状;总结了其影响因素,主要包括POPs本身的理化性质 (lgKOA)、植物特性 (叶片表面形态、脂质含量、表皮的可渗透性) 以及环境温度;提出了目前大气、植物间POPs交换过程研究中存在的部分问题,以及今后可能的发展方向.

English Abstract

参考文献 (60)

目录

/

返回文章
返回