厌氧折流板反应器(ABR)处理柠檬黄模拟废水的效果及产物分析

谢琴, 伍健东, 周兴求. 厌氧折流板反应器(ABR)处理柠檬黄模拟废水的效果及产物分析[J]. 环境化学, 2013, 32(5): 827-832. doi: 10.7524/j.issn.0254-6108.2013.05.015
引用本文: 谢琴, 伍健东, 周兴求. 厌氧折流板反应器(ABR)处理柠檬黄模拟废水的效果及产物分析[J]. 环境化学, 2013, 32(5): 827-832. doi: 10.7524/j.issn.0254-6108.2013.05.015
XIE Qin, WU Jiandong, ZHOU Xingqiu. Degradation performance and product of anaerobic baffled reactor treating simulated wastewater containing tartrazine[J]. Environmental Chemistry, 2013, 32(5): 827-832. doi: 10.7524/j.issn.0254-6108.2013.05.015
Citation: XIE Qin, WU Jiandong, ZHOU Xingqiu. Degradation performance and product of anaerobic baffled reactor treating simulated wastewater containing tartrazine[J]. Environmental Chemistry, 2013, 32(5): 827-832. doi: 10.7524/j.issn.0254-6108.2013.05.015

厌氧折流板反应器(ABR)处理柠檬黄模拟废水的效果及产物分析

Degradation performance and product of anaerobic baffled reactor treating simulated wastewater containing tartrazine

  • 摘要: 采用厌氧折流板反应器(ABR)处理柠檬黄模拟废水,研究在不同水力停留时间(HRT)下,ABR对柠檬黄及COD的去除效果,实验结果表明,HRT为30 h时,柠檬黄经ABR厌氧处理后的去除率达96.4%,COD去除率达97.9%.同时利用红外光谱、UV-Vis、离子色谱分析柠檬黄的降解产物.从红外光谱和UV-Vis分析得出,柠檬黄经ABR厌氧处理后偶氮键断裂,生成的芳香胺类化合物被进一步降解为含苯环、含萘环的化合物;离子色谱定性分析得出柠檬黄分子中的磺酸基转化成了硫酸根.
  • 加载中
  • [1] Stolz A. Basic and applied aspects in the microbial degradation of azo dyes [J]. Appl Microbiol Biotechnol, 2001, 56(1/2): 69-80
    [2] Pandey A, Singh P, Iyengar L. Bacterial decolorization and degradation of azo dyes [J]. International Biodeterioration & Biodegradation, 2007,59(2): 73-84
    [3] Kolly M, Pecoud A, Frei P C. Additives contained in drug formulations most frequently prescribed in Switzerland [J]. Ann Allergy, 1989,62 (1): 21-25
    [4] Lockey S D. Allergic reactions due to FD and C yellow #5 tartrazine, an aniline dye used as a coloring agent in various steroids [J]. Ann Allergy, 1959, 17: 719-725
    [5] Lockey S D. Hypersensitivity to tartrazine (FD&C Yellow No. 5) and other dyes and additives present in foods and pharmaceutical products [J]. Ann Allergy, 1977, 38 (3): 206-210
    [6] 张林生, 蒋岚岚. 染料废水的脱色方法 [J]. 化工环保, 2000, 20(1): 14-18
    [7] Turgay O, Ersoz G, Atalay S, et al. The treatment of azo dyes found in textile industry wastewater by anaerobic biological method and chemical oxidation [J]. Separation and Purification Technology, 2011, 79: 26-33
    [8] El-Gohary F, Tawfik A. Decolorization and COD reduction of disperse and reactive dyes wastewater using chemical-coagulation followed by sequential batch reactor (SBR) process [J]. Desalination, 2009, 249: 1159-1164
    [9] Zee F P V Z, Lettinga G, Field J A. Azo dye decolourisation by anaerobic granular sludge [J]. Chemosphere, 2001, 44(5): 1169-1176
    [10] Bromley-Challenor K C A, Knapp J S, Zhang Z, et al. Decolorization of an azo dye by unacclimated activated sludge under anaerobic conditions [J]. Water Research, 2004, 34(18): 4410-4418
    [11] Sponza D T, Isik M. Decolorization and azo dye degradation by anaerobic/aerobic sequential process [J]. Enzyme and Microbial Technology, 2002, 31(12): 102-110
    [12] Chang J S, Chou C, Lin P J, et al. Kinetic characteristics of bacterial azo-dye decolorization by Pseudomonas luteola[J]. Water Research, 2001, 35(12):2841-2850
    [13] Wang H, Zheng X W, Su J Q, et al. Biological decolorization of the reactive dyes Reactive Black 5 by a novel isolated bacterial strain Enterobacter sp. EC3 [J]. Journal of Hazardous Materials, 2009, 171: 654-659
    [14] 黄春梅, 黄瑞敏, 徐家忠, 等. 活性艳红X-3B 的厌氧生物降解与机理 [J]. 环境化学, 2012, 31(3): 354-359
    [15] 黄瑞敏, 刘欣, 黄春梅, 等. 复合式厌氧折流板反应器处理印染废水试验研究 [J]. 环境工程, 2010, 28(6): 11-15
    [16] Pasukphun N, Vinitnantharat S. Degradation of organic substances and reactive dye in an immobilized-cell sequencing batch reactor operation on simulated textile wastewater [J]. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering, 2003, 38 (10): 2019-2028, 1532-4117
    [17] Buitron G, Quezada M, Moreno G. Aerobic degradation of the azo dye acid red 151 in a sequencing batch biofilter [J]. Bioresource Technology, 2004, 92: 143-149
    [18] Ong S A, Toorisaka E, Hirata M, et al. Combination of adsorption and biodegradation processes for textile effluent treatment using a granular activated carbon-biofilm configured packed column system [J]. Journal of Environmental Sciences, 2008, 20: 952-956
    [19] 冯祥芬. 准分子紫外光源及其降解废水废气的研究 . 上海: 复旦大学博士学位论文, 2005: 56
  • 加载中
计量
  • 文章访问数:  1013
  • HTML全文浏览数:  977
  • PDF下载数:  459
  • 施引文献:  0
出版历程
  • 收稿日期:  2012-08-09

厌氧折流板反应器(ABR)处理柠檬黄模拟废水的效果及产物分析

  • 1.  华南理工大学环境科学与工程学院, 广州, 510006;
  • 2.  华南理工大学,工业聚集区污染控制与生态修复教育部重点实验室, 广州, 510006

摘要: 采用厌氧折流板反应器(ABR)处理柠檬黄模拟废水,研究在不同水力停留时间(HRT)下,ABR对柠檬黄及COD的去除效果,实验结果表明,HRT为30 h时,柠檬黄经ABR厌氧处理后的去除率达96.4%,COD去除率达97.9%.同时利用红外光谱、UV-Vis、离子色谱分析柠檬黄的降解产物.从红外光谱和UV-Vis分析得出,柠檬黄经ABR厌氧处理后偶氮键断裂,生成的芳香胺类化合物被进一步降解为含苯环、含萘环的化合物;离子色谱定性分析得出柠檬黄分子中的磺酸基转化成了硫酸根.

English Abstract

参考文献 (19)

目录

/

返回文章
返回