水体、土壤和沉积物中铊的化学形态研究进展

贾彦龙, 肖唐付, 周广柱, 宁增平. 水体、土壤和沉积物中铊的化学形态研究进展[J]. 环境化学, 2013, 32(6): 917-925. doi: 10.7524/j.issn.0254-6108.2013.06.001
引用本文: 贾彦龙, 肖唐付, 周广柱, 宁增平. 水体、土壤和沉积物中铊的化学形态研究进展[J]. 环境化学, 2013, 32(6): 917-925. doi: 10.7524/j.issn.0254-6108.2013.06.001
JIA Yanlong, XIAO Tangfu, ZHOU Guangzhu, NING Zengping. Advance on the chemical speciation of thallium in water, soil and sediment[J]. Environmental Chemistry, 2013, 32(6): 917-925. doi: 10.7524/j.issn.0254-6108.2013.06.001
Citation: JIA Yanlong, XIAO Tangfu, ZHOU Guangzhu, NING Zengping. Advance on the chemical speciation of thallium in water, soil and sediment[J]. Environmental Chemistry, 2013, 32(6): 917-925. doi: 10.7524/j.issn.0254-6108.2013.06.001

水体、土壤和沉积物中铊的化学形态研究进展

  • 基金项目:

    国家自然科学基金(41173028)资助.

Advance on the chemical speciation of thallium in water, soil and sediment

  • 摘要: 铊(TI)是一个典型性的毒害重金属元素,在环境中的迁移转化行为、富集机制、毒性和生物效应与其赋存化学形态密切相关. 本文对水体、土壤和沉积物中Tl化学形态分布、演化特征和化学形态分析方法作了系统总结和评述,并对Tl化学形态分析存在问题及未来发展趋势进行了展望.
  • 加载中
  • [1] Zitko V. Toxicity and pollution potential of thallium[J]. Science of the Total Environment, 1975, 4(2):185-192
    [2] [2] Kwan K H M, Smith S. Some aspects of the kinetics of cadmium and thallium uptake by fronds of Lemna-Minor-L[J]. New Phytologist, 1991, 117(1):91-102
    [3] [3] Borgmann U, Cheam V, Norwood W P, et al. Toxicity and bioaccumulation of thallium in Hyalella azteca, with comparison to other metals and prediction of environmental impact[J]. Environmental Pollution, 1998, 99(1):105-114
    [4] [4] Ralph L, Twiss M R. Comparative toxicity of thallium(I), thallium(Ⅲ), and cadmium(Ⅱ) to the unicellular alga chlorella isolated from Lake Erie[J]. Bulletin of Environmental Contamination and Toxicology, 2002, 68(2):261-268
    [5] [5] Templeton D M, Ariese F, Cornelis R, et al. Guidelines for terms related to chemical speciation and fractionation of elements. definitions, structural aspects, and methodological approaches (IUPAC Recommendations 2000)[J]. Pure and Applied Chemistry, 2000, 72(8):1453-1470
    [6] [7] Flegal A R, Patterson C C. Thallium concentrations in seawater[J]. Marine Chemistry, 1985, 15(4):327-331
    [7] [8] Cleven R, Fokkert L. Potentiometric stripping analysis of thallium in natural-waters[J]. Analytica Chimica Acta, 1994, 289(2):215-221
    [8] [9] Banks D, Reimann C, Royset O, et al. Natural concentrations of major and trace-elements in some Norwegian bedrock groundwaters[J]. Applied Geochemistry, 1995, 10(1):1-16
    [9] [10] Hall G E M, Vaive J E, Pelchat J C. Performance of inductively coupled plasma mass spectrometric methods used in the determination of trace elements in surface waters in hydrogeochemical surveys[J]. Journal of Analytical Atomic Spectrometry, 1996, 11(9):779-786
    [10] [11] Lukaszewski Z, Zembrzuski W, Piela A. Direct determination of ultratraces of thallium in water by flow-injection-differential-pulse anodic stripping voltammetry[J]. Analytica Chimica Acta, 1996, 318(2):159-165
    [11] [12] Vink B W. The behavior of thallium in the (sub)surface environment in terms of Eh and pH[J]. Chemical Geology, 1993, 109(1/4):119-123
    [12] [13] Kotvly S, Sucha L. Handbook of chemical equilibrium in analytical chemistry[M]. Ellis Horwood, 1985:245
    [13] [14] Downs A J. Chemistry of alminum, gallium, indium and thallium[M]. New York: Blackie Academic & Professional, 1993:1-526
    [14] [15] Xiong Y L. The aqueous geochemistry of thallium: Speciation and solubility of thallium in low temperature systems[J]. Environmental Chemistry, 2009, 6(5):441-451
    [15] [16] Parker D R, Norvell W A, Chaney R L. GEOCHEM-PC: a chemical speciation program for IBM and compatible personal computers//Loeppert R H, Schwab A P, Goldberg S (eds). Chemical equilibrium and reaction models[M]. Madison, WI: Soil Science Society of America, Special publication 42, 1994: 245-277
    [16] [17] Casiot C, Egal M, Bruneel O, et al. Predominance of aqueous Tl(Ⅰ) species in the river system downstream from the abandoned carnoules mine (Southern France)[J]. Environmental Science Technology, 2011, 45:2056-2064
    [17] [18] Gil R A, Pacheco P H, Smichowski P, et al. Speciation analysis of thallium using electrothermal AAS following on-line pre-concentration in a microcolumn filled with multiwalled carbon nanotubes[J]. Microchimica Acta, 2009, 167(3/4):187-193
    [18] [19] Karlsson U, Duker A, Karlsson S. Separation and quantification of Tl(Ⅰ) and Tl(Ⅲ) in fresh water samples[J]. Journal of Environmental Science and Health Part A-Toxic/Hazardous Substances Environmental Engineering, 2006, 41(7):1157-1169
    [19] [20] Pacheco P H, Gil R A, Smichowski P, et al. L-Tyrosine immobilized on multiwalled carbon nanotubes: A new substrate for thallium separation and speciation using stabilized temperature platform furnace-electrothermal atomic absorption spectrometry[J]. Analytica Chimica Acta, 2009, 656(1/2):36-41
    [20] [21] Kaplan D I, Mattigod S V. Aqueous geochemistry of thallium//Nriagu J O. Thallium in the environment[M]. New York:Wiley, 1998: 15-29
    [21] [22] Batley G E, Florence T M. Determination of thallium in natural-waters by anodic-stripping voltammetry[J]. Journal of Electroanalytical Chemistry, 1975, 61(2):205-211
    [22] [23] Lin T S, Nriagu J O. Thallium speciation in the Great Lakes[J]. Environmental Science Technology, 1999, 33(19):3394-3397
    [23] [24] Lin T S, Nriagu J O. Thallium speciation in river waters with Chelex-100 resin[J]. Analytica Chimica Acta, 1999, 395(3):301-307
    [24] [25] Cheam V. Comment on "Thallium speciation in the Great Lakes"[J]. Environmental Science Technology, 2000, 34(11):2367-2368
    [25] [26] Twining B S, Twiss M R, Fisher N S. Oxidation of thallium by freshwater plankton communities[J]. Environmental Science Technology, 2003, 37(12):2720-2726
    [26] [27] Arpadjan S, Petrova P, Knutsson J. Speciation analysis of thallium in water samples after separation/preconcentration with the Empore (TM) chelating disk[J]. International Journal of Environmental Analytical Chemistry, 2011, 91(11):1088-1099
    [27] [28] Lin T S. Thallium speciation and distribution in the Great lakes. Ann Arbor: University of Michigan, Environmental Health Sciences, 1997
    [28] [29] Bidoglio G, Ferrari D, Selli E, et al. Humic acid binding of trivalent Tl and Cr studied by synchronous and time-resolved fluorescence[J]. Environmental Science Technology, 1997, 31(12):3536-3543
    [29] [30] Jacobson A R, McBride M B, Baveye P, et al. Environmental factors determining the trace-level sorption of silver and thallium to soils[J]. Science of the Total Environment, 2005, 345(1/3):191-205
    [30] [31] Bidoglio G, Gibson P N, Ogorman M, et al. X-ray-absorption spectroscopy investigation of surface redox transformations of thallium and chromium on colloidal mineral oxides[J]. Geochimica Et Cosmochimica Acta, 1993, 57(10):2389-2394
    [31] [32] Laforte L, Tessier A, Gobeil C, et al. Thallium diagenesis in lacustrine sediments[J]. Geochimica Et Cosmochimica Acta, 2005, 69(22):5295-5306
    [32] [33] Schedlbauer O F, Heumann K G. Development of an isotope dilution mass spectrometric method for dimethylthallium speciation and first evidence of its existence in the ocean[J]. Analytical Chemistry, 1999, 71(24):5459-5464
    [33] [34] Huber F, Schmidt U, Kirchmann H. Aqueous chemistry of organolead and organothallium compounds in the prescence of microorganisms//Brinckman F E, Bellama, J M, eds, Organometals and organometalloids-occurence and fate in the environment[M]. Washington, DC: American Chemical Society, Symposium Series 82, 1978:65-81
    [34] [35] Schedlbauer O F, Heumann K G. Biomethylation of thallium by bacteria and first determination of biogenic dimethylthallium in the ocean[J]. Applied Organometallic Chemistry, 2000, 14(6):330-340
    [35] [36] Twiss M R, Twining B S, Fisher N S. Partitioning of dissolved thallium by seston in Lakes Erie and Ontario[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2003, 60(11):1369-1375
    [36] [37] Li D X, Gao Z M, Zhu Y X, et al. Photochemical reaction of Tl in aqueous solution and its environmental significance[J]. Geochemical Journal, 2005, 39(2):113-119
    [37] [38] Kamenov G D, Mueller P A, Perfit M R. Optimization of mixed Pb-Tl solutions for high precision isotopic analyses by MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2004, 19(9):1262-1267
    [38] [39] Karlsson U, Karlsson S, Duker A. The effect of light and iron(Ⅱ)/iron(Ⅲ) on the distribution of Tl(Ⅰ)/Tl(Ⅲ) in fresh water systems[J]. Journal of Environmental Monitoring, 2006, 8(6):634-640
    [39] [43] Coetzee P P, Fischer J L, Hu M. Simultaneous separation and determination of Tl(Ⅰ) and Tl(Ⅲ) by IC-ICP-OES and IC-ICP-MS[J]. Water Sa, 2003, 29(1):17-22
    [40] [44] Nolan A, Schaumloffel D, Lombi E, et al. Determination of Tl-(I) and Tl-(Ⅲ) by IC-ICP-MS and application to Tl speciation analysis in the Tl hyperaccumulator plant Iberis intermedia[J]. Journal of Analytical Atomic Spectrometry, 2004, 19(6):757-761
    [41] [48] Morgan J M, Mchenry J R, Masten L W. Simultaneous determination of inorganic and organic thallium by atomic-absorption analysis[J]. Bulletin of Environmental Contamination and Toxicology, 1980, 24(3):333-337
    [42] [49] Dadfarnia S, Assadollahi T, Shabani A M H. Speciation and determination of thallium by on-line microcolumn separation/preconcentration by flow injection-flame atomic absorption spectrometry using immobilized oxine as sorbent[J]. Journal of Hazardous Materials, 2007, 148(1/2):446-452
    [43] [50] Krasnodebska-Ostrega B, Paldyna J, Wawrzynska M, et al. Indirect anodic stripping voltammetric determination of Tl(Ⅰ) and Tl(Ⅲ) in the baltic seawater samples enriched in thallium species[J]. Electroanalysis, 2011, 23(3):605-610
    [44] [51] Meeravali N N, Jiang S J. Ultra-trace speciation analysis of thallium in environmental water samples by inductively coupled plasma mass spectrometry after a novel sequential mixed-micelle cloud point extraction[J]. Journal of Analytical Atomic Spectrometry, 2008, 23(4):555-560
    [45] [52] Mahamuni S V, Wadgaonkar P, PAnuse M A. Rapid liquid-liquid extraction of thallium(Ⅲ) from succinate media with 2-octylaminopyirdine in chloroform as the extractant[J]. Journal of the Serbian Chemical Society, 2008, 73(4):435-451
    [46] [53] Altundag H, Dundar M S. Speeding up of a thallium speciation using ion exchange column system[J]. Fresenius Environmental Bulletin, 2009, 18(11):2102-2107
    [47] [54] Karatepe A, Soylak M, Elci L. Selective preconcentration of thallium species as chloro and iodo complexes on Chromosorb 105 resin prior to electrothermal atomic absorption spectrometry[J]. Talanta, 2011, 85(4):1974-1979
    [48] [55] Rao C R M, Ruiz-Chancho M J, Sahuquillo A, et al. Assessment of extractants for the determination of thallium in an accidentally polluted soil[J]. Bulletin of Environmental Contamination and Toxicology, 2008, 81(4):334-338
    [49] [56] Rauret G, Lopez-Sanchez J F, Sahuquillo A, et al. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials[J]. Journal of Environmental Monitoring, 1999, 1(1):57-61
    [50] [57] Martin F, GarcIa I, Dorronsoro C, et al. Thallium behavior in soils pulluted by pyrite tailings(Aznalcollar, Spain)[J]. Soil Sediment Contamination, 2004, 13:25-36
    [51] [59] Tessier A, Campbell P G C, Bisson M. Sequential extraction procedure for the speciation of particulate trace-metals[J]. Analytical Chemistry, 1979, 51(7):844-851
    [52] [61] Bendicho C, Villar M, Alava F, et al. Operational speciation of thallium in environmental solid samples by electrothermal atomic absorption spectrometry according to the BCR sequential extraction scheme[J]. Journal of Analytical Atomic Spectrometry, 2001, 16(12):1424-1428
    [53] [62] Jakubowska M, Zembrzuski W, Lukaszewski Z. Oxidative extraction versus total decomposition of soil in the determination of thallium[J]. Talanta, 2006, 68(5):1736-1739
    [54] [64] Jakubowska M, Pasieczna A, Zembrzuski W, et al. Thallium in fractions of soil formed on floodplain terraces[J]. Chemosphere, 2007, 66(4):611-618
    [55] [66] Martin H W, Kaplan D I. Temporal changes in cadmium, thallium and vanadium mobility in soil and phytoavailability under field conditions[J]. Water Air and Soil Pollution, 1998, 101:399-410
    [56] [67] Wang L, Kubota M, Higashi T, et al. Evaluation of a sequential extraction procedure for the fractionation of thallium in soils and determination of the content by flame atomic absorption spectrometry[J]. Soil Science and Plant Nutrition, 2004, 50(3):339-347
    [57] [68] Xiao T F, Guha J, Boyle D, et al. Naturally occurring thallium: A hidden geoenvironmental health hazard?[J]. Environment International, 2004, 30(4):501-507
    [58] [69] Yang C X, Chen Y H, Peng P A, et al. Distribution of natural and anthropogenic thallium in the soils in an industrial pyrite slag disposing area[J]. Science of the Total Environment, 2005, 341(1/3):159-172
    [59] [72] Liu J, Lippold H, Wang J, et al. Sorption of thallium(I) onto geological materials: influence of pH and humic matter[J]. Chemosphere, 2011, 82(6):866-871
  • 加载中
计量
  • 文章访问数:  321
  • HTML全文浏览数:  283
  • PDF下载数:  903
  • 施引文献:  0
出版历程
  • 收稿日期:  2012-10-04

水体、土壤和沉积物中铊的化学形态研究进展

  • 1.  中国科学院地球化学研究所 环境地球化学国家重点实验室, 贵阳, 550002;
  • 2.  中国科学院大学, 北京, 100039;
  • 3.  山东科技大学化学与环境工程学院, 青岛, 266590
基金项目:  国家自然科学基金(41173028)资助.

摘要: 铊(TI)是一个典型性的毒害重金属元素,在环境中的迁移转化行为、富集机制、毒性和生物效应与其赋存化学形态密切相关. 本文对水体、土壤和沉积物中Tl化学形态分布、演化特征和化学形态分析方法作了系统总结和评述,并对Tl化学形态分析存在问题及未来发展趋势进行了展望.

English Abstract

参考文献 (59)

目录

/

返回文章
返回