土壤胶体对重金属运移行为的影响

刘冠男, 刘新会. 土壤胶体对重金属运移行为的影响[J]. 环境化学, 2013, 32(7): 1308-1317. doi: 10.7524/j.issn.0254-6108.2013.07.026
引用本文: 刘冠男, 刘新会. 土壤胶体对重金属运移行为的影响[J]. 环境化学, 2013, 32(7): 1308-1317. doi: 10.7524/j.issn.0254-6108.2013.07.026
LIU Guannan, LIU Xinhui. A review on the impact of soil colloids on heavy metal transport[J]. Environmental Chemistry, 2013, 32(7): 1308-1317. doi: 10.7524/j.issn.0254-6108.2013.07.026
Citation: LIU Guannan, LIU Xinhui. A review on the impact of soil colloids on heavy metal transport[J]. Environmental Chemistry, 2013, 32(7): 1308-1317. doi: 10.7524/j.issn.0254-6108.2013.07.026

土壤胶体对重金属运移行为的影响

  • 基金项目:

    国家重点基础研究发展计划(2013CB430405)

    国家自然科学基金创新研究群体科学基金(51121003)

    中央高校基本科研业务费专项资金项目

    环保公益性行业科研专项(2011467054)资助.

A review on the impact of soil colloids on heavy metal transport

  • Fund Project:
  • 摘要: 累积在表层土壤中的重金属,在一定条件下可以向地下迁移,进而影响地下水水质.由于现有污染物运移预测模型对重金属等污染物在土壤中运移的预测与实际监测结果偏差巨大,土壤胶体对土壤重金属运移的影响越来越受到人们的重视.土壤胶体组成丰富,在土壤环境中广泛存在.土壤胶体能够与重金属等污染物质相结合,对重金属等污染物质的运移产生重要影响.土壤胶体运移和土壤胶体与重金属的相互作用受到水动力、pH、离子强度、胶体粒径、土壤含水率等多种物理化学条件的影响.本文综述了土壤胶体对土壤重金属运移影响的诸多因素,介绍了胶体作用下重金属等污染物在多孔介质中的运移模型,提出了当前研究中存在的问题,并对今后需要展开的工作提出了建议.
  • 加载中
  • [1] 徐良将, 张明礼,杨浩. 土壤重金属污染修复方法的研究进展[J]. 安徽农业科学, 2011, 39(6):3429-3422
    [2] de Jonge L W, Kjaergaard C,Moldrup P. Colloids and colloid-facilitated transport of contaminants in soils: An introduction[J]. Vadose Zone J, 2004, 3(2):321-325
    [3] Ryan J N,Elimelech M.Colloid mobilization and transport in groundwater[J]. Colloid Surface A, 1996, 107:1-56
    [4] Citeau L, Lamy I, van Oort F, et al. Colloidal facilitated transfer of metals in soils under different land use[J]. Colloid Surface A, 2003, 217(1/3):11-19
    [5] Kanti Sen T,Khilar K C. Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media[J]. Adv Colloid Interface, 2006, 119(2/3):71-96
    [6] McCarthy J F,McKay L D. Colloid transport in the subsurface: Past, present, and future challenges[J]. Vadose Zone J, 2004, 3(2):326-337
    [7] Baumann T, Fruhstorfer P, Klein T, et al. Colloid and heavy metal transport at landfill sites in direct contact with groundwater[J]. Water Res, 2006, 40(14):2776-2786
    [8] Chen G, Zeng G, Du C, et al. Transfer of heavy metals from compost to red soil and groundwater under simulated rainfall conditions[J]. J Hazard Mater, 2010, 181(1/3):211-216
    [9] Karathanasis A D,Johnson D M C. Subsurface transport of Cd, Cr, and Mo mediated by biosolid colloids[J]. Sci Total Environ, 2006, 354(2/3):157-169
    [10] Kretzschmar R,Schäfer T. Metal retention and transport on colloidal particles in the environment[J]. Elements, 2005, 1(4):205-210
    [11] Tuccillo M. Size fractionation of metals in runoff from residential and highway storm sewers[J]. SciTotal Environ, 2006, 355(1/3):288-300
    [12] Bekhit H M,Hassan A E. Two-dimensional modeling of contaminant transport in porous media in the presence of colloids[J]. AdvWater Resour, 2005, 28(12):1320-1335
    [13] Stumm W. Chemical interaction in particle separation[J]. Environ Sci Technol, 1977, 11(12):1066-1070
    [14] 曹存存, 吕俊文, 夏良树, 等. 土壤胶体对渗滤液中铀迁移影响的研究进展[J]. 核化学与放射化学, 2012, 34(1):1-7
    [15] 熊毅, 土壤专家, 许冀泉, 等. 土壤胶体: 土壤胶体的物质基础[M].北京:科学出版社, 1983
    [16] Wilkinson K J,Lead J R. Environmental colloids and particles: Behaviour, separation and characterisation[M]. Chichester: Wiley, 2007
    [17] Grolimund D,Borkovec M. Long-term release kinetics of colloidal particles from natural porous media[J]. Environ Sci Technol, 1999, 33(22):4054-4060
    [18] Saiers J E,Hornberger G M. The influence of ionic strength on the facilitated transport of cesium by kaolinite colloids[J]. Water Resour Res, 1999, 35(6):1713-1727
    [19] 徐绍辉,刘庆玲. 饱和多孔介质中胶体沉淀释放过程的数值模拟[J]. 高校地质学报, 2010, 16(1):26-31
    [20] 胡俊栋, 沈亚婷, 王学军. 离子强度, pH 对土壤胶体释放, 分配沉积行为的影响[J]. 生态环境学报, 2009, 18(2):629-637
    [21] Khilar K C,Fogler H S. The existence of a critical salt concentration for particle release[J]. J Colloid Interf Sci, 1984, 101(1):214-224
    [22] Bergendahl J A,Grasso D. Mechanistic basis for particle detachment from granular media[J]. Environ Sci Technol, 2003, 37(10):2317-2322
    [23] Li X, Zhang P, Lin C, et al. Role of hydrodynamic drag on microsphere deposition and re-entrainment in porous media under unfavorable conditions[J]. Environ Sci Technol, 2005, 39(11):4012-4020
    [24] Tripathy A, Study of hydrodyanmically and chemically induced in-situ colloid particle release in porous media.Rourkela: National Institute of Technology Rourkela, 2007
    [25] Bergendahl J,Grasso D. Colloid generation during batch leaching tests: Mechanics of disaggregation[J]. Colloid Surface A, 1998, 135(1/3):193-205
    [26] Bergendahl J,Grasso D. Prediction of colloid detachment in a model porous media: Thermodynamics[J]. AicheJ, 1999, 45(3):475-484
    [27] Burdick G, Berman N,Beaudoin S. Hydrodynamic particle removal from surfaces[J]. Thin Solid Films, 2005, 488(1):116-123
    [28] Morales V L, Gao B,Steenhuis T S. Grain Surface-Roughness Effects on Colloidal Retention in the Vadose Zone[J]. Vadose Zone Journal, 2009, 8(1):11-20
    [29] Massoudieh A,Ginn T R, Colloid-facilitated contaminant transport in unsaturated porous media, in modelling of pollutants in complex environmental systems [M]. Hertfordshire, Glensdale: ILM Publications,.2010: 263
    [30] Torkzaban S, Bradford S A,Walker S L. Resolving the coupled effects of hydrodynamics and DLVO forces on colloid attachment in porous media[J]. Langmuir, 2007, 23(19):9652-9660
    [31] Rege S,Fogler H S. Network model for straining dominated particle entrapment in porous media[J]. Chem Eng Sci, 1987, 42(7):1553-1564
    [32] Sen T K, Mahajan S P,Khilar K C. Colloid-associated contaminant transport in porous media: 1. Experimental studies[J]. Aiche J, 2002, 48(10):2366-2374
    [33] Bradford S A,Torkzaban S. Colloid transport andretention in unsaturated porous media: A review of interface-, collector-, and pore-scale processes and models[J]. Vadose Zone J, 2008, 7(2):667-681
    [34] Flury M,Qiu H. Modeling colloid-facilitated contaminant transport in the vadose zone[J]. Vadose Zone J, 2008, 7(2):682-697
    [35] Gargiulo G, Bradford S A, Simunek J, et al. Bacteria transport and deposition under unsaturated flow conditions: The role of water content and bacteria surface hydrophobicity[J]. Vadose Zone J, 2008, 7(2):406
    [36] Keller A A. Transport of colloids in unsaturated porous media: Explaining large-scale behavior based on pore-scale mechanisms[J]. Water Resour Res, 2004, 40(12):W12403
    [37] Sirivithayapakorn S. Transport of colloids in unsaturated porous media: A pore-scale observation of processes during the dissolution of air-water interface[J]. Water Resour Res, 2003, 39(12):1346-1351
    [38] Wan J,Wilson J L. Colloid transport in unsaturated porous media[J]. Water Resour Res, 1994, 30(4):857-864
    [39] Lazouskaya V,Jin Y. Colloid retention at air-water interface in a capillary channel[J]. Colloid Surface A, 2008, 325(3):141-151
    [40] Wan J,Tokunaga T K. Film straining of colloids in unsaturated porous media: Conceptual model and experimental testing[J]. Environ Sci Technol, 1997, 31(8):2413-2420
    [41] Lenhart J J,Saiers J E. Transport of silica colloids through unsaturated porous media: Experimental results and model comparisons[J]. Environ Sci Technol, 2002, 36(4):769-777
    [42] Chu Y, Jin Y, Flury M, et al. Mechanisms of virus removal during transport in unsaturated porous media[J]. Water Resour Res, 2001, 37(2):253-263
    [43] Bradl H B. Adsorption of heavy metal ions on soils and soils constituents[J]. JColloid Interf Sci, 2004, 277(1):1-18
    [44] McBride M B. Environmental chemistry of soils[M]. Oxford: Oxford University Press, 1994
    [45] 杨金燕, 杨肖娥, 何振立, 等. 土壤中铅的吸附-解吸行为研究进展[J]. 生态环境, 2005, 14(1):102-107
    [46] Barton C,Karathanasis A. Colloid-enhanced desorption of zinc in soil monoliths[J]. Int J Environ Stud, 2003, 60(4):395-409
    [47] 何振立. 污染及有益元素的土壤化学平衡[M]. 北京: 中国环境科学出版社, 1998
    [48] 李程峰, 刘云国, 曾光明, 等. pH 值影响 Cd 在红壤中吸附行为的实验研究[J]. 农业环境科学学报, 2005, 24(1):84-88
    [49] 张淼, 李亚青. 黄土体对重金属 (Cd, Pb, Zn, Cu) 吸附试验研究[J]. 西北水资源与水工程, 1996, 7(2):35-40
    [50] Lead J, Hamilton-Taylor J, Davison W, et al. Trace metal sorption by natural particles and coarse colloids[J]. Geochim Cosmochim Ac, 1999, 63(11/12):1661-1670
    [51] 邹献中, 徐建民, 赵安珍, 等. 离子强度和 pH 对可变电荷土壤与铜离子相互作用的影响[J]. 土壤学报, 2003, 40(6):845-851
    [52] 杨亚提, 张平. 离子强度对恒电荷土壤胶体吸附 Cu2+和 Pb2+的影响[J]. 环境化学, 2001, 20(6):566-571
    [53] Um W U,Papelis C P. Geochemical effects on colloid-facilitated metal transport through zeolitized tuffs from the Nevada Test Site[J]. Environ Geol, 2002, 43(1):209-218
    [54] 余贵芬,蒋新, 吴泓涛, 等. 镉铅在粘土上的吸附及受腐殖酸的影响[J]. 环境科学, 2002, 23(5):109-112
    [55] 温华, 三峡水库消落区土壤矿质胶体对镉的吸持特征与胶体-镉复合迁移研究. 重庆: 西南农业大学硕士学位论文, 2005
    [56] Davis C, Eschenazi E,Papadopoulos K. Combined effects of Ca2+and humic acid on colloid transport through porous media[J]. ColloidPolym Sci, 2002, 280(1):52-58
    [57] 荣湘民, 岳振华. 湖南省几种主要菜园土铅的化学行为及其作物效应的初步研究[J]. 热带亚热带土壤科学, 1996, 5(1):27-32
    [58] Albarran N, Missana T, García-Gutiérrez M, et al. Strontium migration in a crystalline medium: effects of the presence of bentonite colloids[J]. J Contam Hydrol, 2011, 122(1/4):76-85
    [59] Li Z,Zhou L. Cadmium transport mediated by soil colloid and dissolved organic matter: A field study[J]. J Environ Sci-China, 2010, 22(1):106-115
    [60] Zhang Q, Hassanizadeh S M, Raoof A, et al. Modeling virus transport and remobilization during transient partially saturated Flow[J]. Vadose Zone J, 2012, 11(2):1539-1663
    [61] Grolimund D, Borkovec M, Barmettler K, et al. Colloid-facilitated transport of strongly sorbing contaminants in natural porous media: A laboratory column study[J]. Environ Sci Technol, 1996, 30(10):3118-3123
    [62] Denaix L, Semlali R M,Douay F. Dissolved and colloidal transport of Cd, Pb, and Zn in a silt loam soil affected by atmospheric industrial deposition[J]. Environ Pollut, 2001, 114(1):29-38
    [63] Mri A, Alexander W, Geckeis H, et al. The colloid and radionuclide retardation experiment at the Grimsel Test Site: Influence of bentonite colloids on radionuclide migration in a fractured rock[J]. Colloid Surface A, 2003, 217(1):33-47
    [64] 林青. 土壤中重金属运移的数值模拟及不确定性分析. 青岛: 青岛大学博士学位论文, 2011
    [65] Corapcioglu M Y,Jiang S. Colloid-facilitated groundwater contaminant transport[J]. Water Resour Res, 1993, 29(7):2215-2226
    [66] Saiers J E,Hornberger G M. The role of colloidal kaolinite in the transport of cesium through laboratory sand columns[J]. Water Resour Res, 1996, 32(1):33-41
    [67] Roy S B,Dzombak D A. Sorption nonequilibrium effects on colloid-enhanced transport of hydrophobic organic compounds in porous media[J]. J Contam Hydrol, 1998, 30(1/2):179-200
    [68] Yang Y, Saiers J E, Xu N, et al. Impact of natural organic matter on uranium transport through saturated geologic materials: From molecular to column scale[J]. Environ Sci Technol, 2012, 46(11):5931-5938
    [69] Sen T K, Nalwaya N,Khilar K C. Colloid-associated contaminant transport in porous media: 2. Mathematical modeling[J]. Aiche J, 2002, 48(10):2375-2385
    [70] Bekhit H M,Hassan A E. Stochastic modeling of colloid-contaminant transport in physically and geochemically heterogeneous porous media[J]. Water Resour Res, 2005, 41(2): W02010
    [71] Corapcioglu M Y,Choi H. Modeling colloid transport in unsaturated porous media and validation with laboratory column data[J]. Water Resour Res, 1996, 32(12):3437-3449
    [72] imnek J, He C, Pang L, et al. Colloid-facilitated solute transport in variably saturated porous media: Numerical model and experimental verification[J]. Vadose Zone J, 2006, 5(3):1035
    [73] Saiers J E,Hornberger G M. Modeling bacteria-facilitated transport of DDT[J]. Water Resour Res, 1996, 32(5):1455-1459
    [74] Van de Weerd H, Leijnse A,Van Riemsdijk W. Transport of reactive colloids and contaminants in groundwater: Effect of nonlinear kinetic interactions[J]. J Contam Hydrol, 1998, 32(3):313-331
  • 加载中
计量
  • 文章访问数:  2177
  • HTML全文浏览数:  1797
  • PDF下载数:  2330
  • 施引文献:  0
出版历程
  • 收稿日期:  2013-02-18
刘冠男, 刘新会. 土壤胶体对重金属运移行为的影响[J]. 环境化学, 2013, 32(7): 1308-1317. doi: 10.7524/j.issn.0254-6108.2013.07.026
引用本文: 刘冠男, 刘新会. 土壤胶体对重金属运移行为的影响[J]. 环境化学, 2013, 32(7): 1308-1317. doi: 10.7524/j.issn.0254-6108.2013.07.026
LIU Guannan, LIU Xinhui. A review on the impact of soil colloids on heavy metal transport[J]. Environmental Chemistry, 2013, 32(7): 1308-1317. doi: 10.7524/j.issn.0254-6108.2013.07.026
Citation: LIU Guannan, LIU Xinhui. A review on the impact of soil colloids on heavy metal transport[J]. Environmental Chemistry, 2013, 32(7): 1308-1317. doi: 10.7524/j.issn.0254-6108.2013.07.026

土壤胶体对重金属运移行为的影响

  • 1. 北京师范大学环境学院,水环境模拟国家重点实验室, 北京, 100875
基金项目:

国家重点基础研究发展计划(2013CB430405)

国家自然科学基金创新研究群体科学基金(51121003)

中央高校基本科研业务费专项资金项目

环保公益性行业科研专项(2011467054)资助.

摘要: 累积在表层土壤中的重金属,在一定条件下可以向地下迁移,进而影响地下水水质.由于现有污染物运移预测模型对重金属等污染物在土壤中运移的预测与实际监测结果偏差巨大,土壤胶体对土壤重金属运移的影响越来越受到人们的重视.土壤胶体组成丰富,在土壤环境中广泛存在.土壤胶体能够与重金属等污染物质相结合,对重金属等污染物质的运移产生重要影响.土壤胶体运移和土壤胶体与重金属的相互作用受到水动力、pH、离子强度、胶体粒径、土壤含水率等多种物理化学条件的影响.本文综述了土壤胶体对土壤重金属运移影响的诸多因素,介绍了胶体作用下重金属等污染物在多孔介质中的运移模型,提出了当前研究中存在的问题,并对今后需要展开的工作提出了建议.

English Abstract

参考文献 (74)

返回顶部

目录

/

返回文章
返回