钼酸铋光催化剂的制备及其光催化活性

李新玉, 方艳芬, 熊世威, 贾漫珂, 黄应平. 钼酸铋光催化剂的制备及其光催化活性[J]. 环境化学, 2013, 32(9): 1611-1618. doi: 10.7524/j.issn.0254-6108.2013.09.003
引用本文: 李新玉, 方艳芬, 熊世威, 贾漫珂, 黄应平. 钼酸铋光催化剂的制备及其光催化活性[J]. 环境化学, 2013, 32(9): 1611-1618. doi: 10.7524/j.issn.0254-6108.2013.09.003
LI Xinyu, FANG Yanfen, XIONG Shiwei, JIA Manke, HUANG Yingping. Preparation and visible-light photocatalytic degradation activity of bismuth molybdate composite[J]. Environmental Chemistry, 2013, 32(9): 1611-1618. doi: 10.7524/j.issn.0254-6108.2013.09.003
Citation: LI Xinyu, FANG Yanfen, XIONG Shiwei, JIA Manke, HUANG Yingping. Preparation and visible-light photocatalytic degradation activity of bismuth molybdate composite[J]. Environmental Chemistry, 2013, 32(9): 1611-1618. doi: 10.7524/j.issn.0254-6108.2013.09.003

钼酸铋光催化剂的制备及其光催化活性

  • 基金项目:

    国家自然科学基金(20877048, 21177072,21207079)

    湖北省创新群体项目(2009CDA020)

    湖北省高等学校优秀中青年科技创新团队计划(T200703)资助

    三峡大学人才科研启动基金(KJ2011B074)

    三峡大学研究生创新基金(2012CX079)资助.

Preparation and visible-light photocatalytic degradation activity of bismuth molybdate composite

  • Fund Project:
  • 摘要: 以表面活性剂聚乙二醇(PEG6000)为模板剂,调节其用量(0、10、20、30、40 gL-1)通过水热法制备得到Bi3.64Mo0.36O6.55/Bi2MoO6纳米光催化剂,分别命名为(BMO-0、BMO-1、BMO-2、BMO-3,BMO-4).采用X-射线衍射仪(XRD),扫描电子显微镜(SEM),紫外可见漫反射(DRS UV-Vis)和比表面仪(BET)对其进行表征,结果表明,制备得到的钼酸铋为立方相Bi3.64Mo0.36O6.55和单斜相Bi2MoO6的混合物,形貌为纳米片和纳米颗粒的混合体.在可见光(420 nm)照射下,研究了Bi3.64Mo0.36O6.55/Bi2MoO6光催化降解罗丹明B(Rhodamine B,RhB)和苯酚(phenol)的催化特性,探讨了在光催化剂制备过程中PEG6000用量对其可见光活性的影响,发现当PEG6000用量为20gL-1时其光催化活性最好.可见光下照射2.5 h即可使RhB(1.3710-5 molL-1)100%脱色,光照12 h后对苯酚(1.4810-3 molL-1)的降解率达到35.15%.采用DPD分光光度法测定了体系中产生的双氧水(H2O2),并结合外加叔丁醇(t-butanol)、碘化钾(KI)等捕获剂试验,推测其催化机理主要为空穴氧化和超氧自由基(O2-)协同氧化历程.
  • 加载中
  • [1] Fang Yanfen, Huang Yingping, Yang Jing, et al. Unique ability of BiOBr to decarboxylate D-Glu and D-MeAsp in the photocatalytic degradation of microcystin-LR in water[J]. Environmental Science Technology, 2011, 45(4):1593-1600
    [2] [2] Zheng Yan, Duan Fang, Chen MingQing, et al. Synthetic Bi2O2CO3 nanostructures: Novel photocatalyst with controlled special surface exposed[J]. Journal of Molecular Catalysis A: Chemical, 2010, 317(1/2): 34-40
    [3] [3] Guo YingNa, Yang Xia, Ma FengYan, et al. Additive-free controllable fabrication of bismuth vanadates and their photocatalytic activity toward dye degradation[J]. Applied Surface Science, 2010, 256: 2215-2222
    [4] [4] Zhang Chuan, Zhu Yongfa. Synthesis of square Bi2WO6 nanoplates as high-activity visible-light-driven photocatalysts[J]. Chemistry of materials, 2005, 17: 3537-3545
    [5] [5] A. Martínez-de la Cruz, S. Obregón Alfaro. Synthesis and characterization of nanoparticles of a-Bi2Mo3O12 prepared by co-precipitation method: Langmuir adsorption parameters and photocatalytic properties with rhodamine B[J]. Solid State Sciences, 2009, 11: 829-835
    [6] [6] Liu Weihong, Wang Hong, Zhou Di, et al. Dielectric properties of low-firing Bi2Mo2O9 thick films screen printed on Al foils and alumina substrates[J]. Journal of the American Ceramic Society, 2010, 93(8): 2202-2206
    [7] [7] Zheng Yan, Duan Fang, Wu Ju, et al. Enhanced photocatalytic activity of bismuth molybdates with the preferentially exposed {010} surface under visible light irradiation[J]. Journal of Molecular Catalysis A: Chemical, 2009,303: 9-14
    [8] [8] Zhang MingYi, Shao ChangLu, Mu JingBo, et al. Hierarchical heterostructures of Bi2MoO6 on carbon nanofibers: controllable solvothermal fabrication and enhanced visible photocatalytic properties[J]. Journal of Materials Chemistry, 2012, 22: 577-584
    [9] [9] Zhao Xu, Xu TongGuang, Yao WenQing, et al. Photodegradation of dye pollutants catalyzed by g-Bi2MoO6 nanoplate under visible light irradiation[J]. Applied Surface Science, 2009, 255: 8036-8040
    [10] [10] Ren Jia, Wang WenZhong, Shang Meng, et al. Heterostructured bismuth molybdate composite: Preparation and improved photocatalytic activity under visible-light irradiation[J]. Applied Materials. Interfaces, 2011, 3: 2529-2533
    [11] [11] Xie Lijin, Zaimei Liu, JianBo Zhang, et al. Preparation of a novel Bi3.64Mo0.36O6.55 nanophotocatalyst by molten salt method and evaluation for photocatalytic decomposition of rhodamine B[J]. Journal of Alloys and Compounds, 2010, 503: 159-162
    [12] [13] Zhao X, Xu T G, Yao W Q, et al. Photodegradation of dye pollutants catalyzed by γ-Bi2MoO6 nanoplate under visible light irradiation[J]. Applied Surface Science, 2009, 255(18): 8036-8040
    [13] [14] Shimodaira Y., Kato H., Kobayashi H., et al. Photophysical properties and photocatalytic activities of bismuth molybdates under visible light irradiation[J]. The Journal of Chemistry B, 2006, 110(36): 17790-17797
    [14] [15] Xie L J, Ma J F, Xu G. Preparation of a novel Bi2MoO6 flake-like nanophotocatalyst by molten salt method and evaluation for photocatalytic decomposition of rhodamine B[J]. Materials Chemistry and Physics, 2008, 110(2/3): 197-200
    [15] [16] Beale A M, Sankar G. In situ study of the formation of crystalline bismuth molybdate materials under hydrothermal conditions[J]. Chemistry of materials, 2002, 15(1): 146-153
    [16] [17] M. Antonietti. Surfactants for novel templating applications[J]. Current Opinion in Colloid & Interface Science, 2001, 6: 244-248
    [17] [19] Fang Yan-fen, Huang Ying-ping, Liu De-fu, et al. Photocatalytic degradation of the dye sulforhodamine-B: A comparative study of different light sources[J]. Journal of Environmental Sciences, 2007, 19: 97-102
    [18] [21] Ollis D F, Pelizzetti E, Serpone N, et al. Photocatalyzed destruction of water contaminants[J]. Environmental Science and Technology, 1991, 25: 1522-1529
    [19] [22] Hoffmann M R, Martin S T, Choi W Y, et al. Environmental applications of semiconductor photocatalysis[J]. Chemical. Reviews, 1995, 95: 69-96
    [20] [23] Liu G, Zhao J, Hidaka H. ESR spin-trapping detection of radical intermediates in the TiO2-assisted photo-oxidation of sulforhodamine B under visible irradiation[J]. Journal of Photochemistry and Photobiology A, 2000, 133: 83-88
    [21] [24] Fu Hongbo, Pan Chengshi, Yao Wenqing, et al. Visible-Light-Induced Degradation of Rhodamine B by Nanosized Bi2WO6[J]. The Journal of Physical Chemistry B, 2005, 109: 22432-22439
  • 加载中
计量
  • 文章访问数:  2636
  • HTML全文浏览数:  2510
  • PDF下载数:  2166
  • 施引文献:  0
出版历程
  • 收稿日期:  2012-12-07
李新玉, 方艳芬, 熊世威, 贾漫珂, 黄应平. 钼酸铋光催化剂的制备及其光催化活性[J]. 环境化学, 2013, 32(9): 1611-1618. doi: 10.7524/j.issn.0254-6108.2013.09.003
引用本文: 李新玉, 方艳芬, 熊世威, 贾漫珂, 黄应平. 钼酸铋光催化剂的制备及其光催化活性[J]. 环境化学, 2013, 32(9): 1611-1618. doi: 10.7524/j.issn.0254-6108.2013.09.003
LI Xinyu, FANG Yanfen, XIONG Shiwei, JIA Manke, HUANG Yingping. Preparation and visible-light photocatalytic degradation activity of bismuth molybdate composite[J]. Environmental Chemistry, 2013, 32(9): 1611-1618. doi: 10.7524/j.issn.0254-6108.2013.09.003
Citation: LI Xinyu, FANG Yanfen, XIONG Shiwei, JIA Manke, HUANG Yingping. Preparation and visible-light photocatalytic degradation activity of bismuth molybdate composite[J]. Environmental Chemistry, 2013, 32(9): 1611-1618. doi: 10.7524/j.issn.0254-6108.2013.09.003

钼酸铋光催化剂的制备及其光催化活性

  • 1. 三峡库区生态环境教育部工程研究中心, 三峡大学, 443002
基金项目:

国家自然科学基金(20877048, 21177072,21207079)

湖北省创新群体项目(2009CDA020)

湖北省高等学校优秀中青年科技创新团队计划(T200703)资助

三峡大学人才科研启动基金(KJ2011B074)

三峡大学研究生创新基金(2012CX079)资助.

摘要: 以表面活性剂聚乙二醇(PEG6000)为模板剂,调节其用量(0、10、20、30、40 gL-1)通过水热法制备得到Bi3.64Mo0.36O6.55/Bi2MoO6纳米光催化剂,分别命名为(BMO-0、BMO-1、BMO-2、BMO-3,BMO-4).采用X-射线衍射仪(XRD),扫描电子显微镜(SEM),紫外可见漫反射(DRS UV-Vis)和比表面仪(BET)对其进行表征,结果表明,制备得到的钼酸铋为立方相Bi3.64Mo0.36O6.55和单斜相Bi2MoO6的混合物,形貌为纳米片和纳米颗粒的混合体.在可见光(420 nm)照射下,研究了Bi3.64Mo0.36O6.55/Bi2MoO6光催化降解罗丹明B(Rhodamine B,RhB)和苯酚(phenol)的催化特性,探讨了在光催化剂制备过程中PEG6000用量对其可见光活性的影响,发现当PEG6000用量为20gL-1时其光催化活性最好.可见光下照射2.5 h即可使RhB(1.3710-5 molL-1)100%脱色,光照12 h后对苯酚(1.4810-3 molL-1)的降解率达到35.15%.采用DPD分光光度法测定了体系中产生的双氧水(H2O2),并结合外加叔丁醇(t-butanol)、碘化钾(KI)等捕获剂试验,推测其催化机理主要为空穴氧化和超氧自由基(O2-)协同氧化历程.

English Abstract

参考文献 (21)

返回顶部

目录

/

返回文章
返回