β-受体阻断剂在粘土上的吸附行为

许佳瑶, 孙红文, 汪磊. β-受体阻断剂在粘土上的吸附行为[J]. 环境化学, 2013, 32(11): 2109-2114. doi: 10.7524/j.issn.0254-6108.2013.11.013
引用本文: 许佳瑶, 孙红文, 汪磊. β-受体阻断剂在粘土上的吸附行为[J]. 环境化学, 2013, 32(11): 2109-2114. doi: 10.7524/j.issn.0254-6108.2013.11.013
XU Jiayao, SUN Hongwen, WANG Lei. Sorption of β-blockers on clay[J]. Environmental Chemistry, 2013, 32(11): 2109-2114. doi: 10.7524/j.issn.0254-6108.2013.11.013
Citation: XU Jiayao, SUN Hongwen, WANG Lei. Sorption of β-blockers on clay[J]. Environmental Chemistry, 2013, 32(11): 2109-2114. doi: 10.7524/j.issn.0254-6108.2013.11.013

β-受体阻断剂在粘土上的吸附行为

  • 基金项目:

    国家自然科学基金项目(41073087)资助。

Sorption of β-blockers on clay

  • Fund Project:
  • 摘要: 主要研究了盐度、pH、溶解性有机质(DOM)对典型β-受体阻断剂(美托洛尔与普萘洛尔)在黏土上吸附行为的影响.结果表明,黏土对上述两种β-受体阻断剂具有较强的吸附能力,吸附系数分别为34.914 L·kg-1(美托洛尔)和21.773 L·kg-1(普萘洛尔).盐度增大抑制β-受体阻断剂的吸附,两价钙离子的作用大于一价钠离子.pH为碱性,β-受体阻断剂以中性形式存在,吸附较弱;pH过低导致黏土表面带负电荷电位降低,也不利于吸附.DOM的加入促进β-受体阻断剂的吸附,但促进作用随DOM浓度提高而减弱,甚至出现吸附抑制.
  • 加载中
  • [1] 戴秋艳.β-受体阻断剂在高血压治疗中的地位[J].世界临床药物.2009,30(10), 597-600
    [2] Botsoglou N A,Fletouris D J.Drag residues in foods,pharmacology,food safety and analysis[M].New York:Marcei,Dekker Inc.,2001
    [3] Alder C A,Schaffner C,Majewsky M,et al.Fate of β-blocker human pharmaceuticals in surface water: Comparison of measured and simulated concentrations in the Glatt Valley Watershed,Switzerland[J].Water Research,2010,44:936-948
    [4] Andreozzi R, Raffaele M, Nicklas P. Pharmaceuticals in STP efuents and their solar photodegradation in aquatic environment[J]. Chemosphere,2003,50 (10):1319-1330
    [5] Bendz D, Paxéus N A, Ginn T R, et al. Occurrence and fate of pharmaceutically active compounds in the environment, a case study:Hje River in Sweden[J].Journal of Hazardous Materials,2005,122:195-204
    [6] Huggett D B,Khania I A,Foran C M.Determination of β-adrenergicreceptor blocking pharmaceuticals in United States waste water effluent[J].Environmental Pollution,2003,121:199 -205
    [7] Roberts P H,Thomas K V.The occurrence of selected pharmaceuticals in wastewater effluent and surface waters of the lower Tyne catchment[J].Science of the Total Environment,2006,356:143-153
    [8] Cleuvers M.Initial risk assessment for three beta-blockers found in the aquatic environment[J].Chemosphere,2005,59:199-205
    [9] Stanley J K,Ramirez A J,Mottaleb M,et al. Enantiospecific toxicity of the β-blocker proporanolol to Daphnia magna and Pimephalespromelas[J]. Environmental Toxicology and Chemistry,2006,25:1780-1786
    [10] Fent K,Weston A A, Caminada D.Ecotoxicology of human pharmaceuticals[J].Aquatic Toxicology,2006,76:122-159
    [11] Maurer M, Escher B I, Richle P,et al.Elimination of β-blockers in sewage treatment plants[J].Water Research,2007,41:1614-1622
    [12] Drillia P,Stamatelatou K,Lyberatos G.Fate and mobility of pharmaceuticals in solid matrices[J].Chemosphere,2005,60:1034-1044
    [13] Kibbey T C G,Paruchuri R,Sabatina D A, et al.Adsorption of beta blockers to environmental surfaces[J]. Environmental Science Technology,2007,41:5349-5356
    [14] Deng Y,Wu F,Liu B,et al.Sorptive removal of β-blocker propranolol from aqueous solution by modified attapulgite: Effect factors and sorption mechanisms[J].Chemical Engineering Journal,2011
    [15] Schaffer M, Bornick H, Nodler K, et al.Role of cation exchange processes on the sorption influenced transport of cationic β-blockers in aquifer sediments[J].Water Research,2012,46:5472-5482
    [16] Niedbala A,Schaffer M, Licha T, et al.Influence of competing inorganic cations on the ion exchange equilibrium of the monovalent organic cation metoprolol on natural sediment[J].Chemosphere,2013,90:1945-1951
    [17] Wang L, Sun H, Wu Y, et al.Effect of sorbed nonylphenol on sorption of phenanthrene onto mineral surface, Journal of Hazardous Materials,2009, 161:1461–1465
    [18] Schwarzenbach R P, Gschwend P M, Imboden D M. Environmental organic chemistry, 2nd ed.[M]. Hoboken, New Jersey: John Wiley & Sons, Inc., 2003: 345
    [19] Escher B I,Bramaz N,Richter M,et al. Comparative eco-toxicological hazard assessment of beta-blockers and their human metabolites using a mode-of-action-based test battery and a QSAR approach[J]. Environmental Science Technology,2006, 40:7402-7408
    [20] Johnson W P,Amy G L. Facilitated transport and enhanced desorption of polycyclic aromatic hydrocarbons by natural organic matter in aquifer sediments[J]. Environmental Science Technology,1995, 29:807-817
  • 加载中
计量
  • 文章访问数:  1223
  • HTML全文浏览数:  1196
  • PDF下载数:  581
  • 施引文献:  0
出版历程
  • 收稿日期:  2012-12-12
许佳瑶, 孙红文, 汪磊. β-受体阻断剂在粘土上的吸附行为[J]. 环境化学, 2013, 32(11): 2109-2114. doi: 10.7524/j.issn.0254-6108.2013.11.013
引用本文: 许佳瑶, 孙红文, 汪磊. β-受体阻断剂在粘土上的吸附行为[J]. 环境化学, 2013, 32(11): 2109-2114. doi: 10.7524/j.issn.0254-6108.2013.11.013
XU Jiayao, SUN Hongwen, WANG Lei. Sorption of β-blockers on clay[J]. Environmental Chemistry, 2013, 32(11): 2109-2114. doi: 10.7524/j.issn.0254-6108.2013.11.013
Citation: XU Jiayao, SUN Hongwen, WANG Lei. Sorption of β-blockers on clay[J]. Environmental Chemistry, 2013, 32(11): 2109-2114. doi: 10.7524/j.issn.0254-6108.2013.11.013

β-受体阻断剂在粘土上的吸附行为

  • 1. 南开大学环境科学与工程学院, 环境污染过程与基准教育部重点实验室, 天津, 300071
基金项目:

国家自然科学基金项目(41073087)资助。

摘要: 主要研究了盐度、pH、溶解性有机质(DOM)对典型β-受体阻断剂(美托洛尔与普萘洛尔)在黏土上吸附行为的影响.结果表明,黏土对上述两种β-受体阻断剂具有较强的吸附能力,吸附系数分别为34.914 L·kg-1(美托洛尔)和21.773 L·kg-1(普萘洛尔).盐度增大抑制β-受体阻断剂的吸附,两价钙离子的作用大于一价钠离子.pH为碱性,β-受体阻断剂以中性形式存在,吸附较弱;pH过低导致黏土表面带负电荷电位降低,也不利于吸附.DOM的加入促进β-受体阻断剂的吸附,但促进作用随DOM浓度提高而减弱,甚至出现吸附抑制.

English Abstract

参考文献 (20)

返回顶部

目录

/

返回文章
返回