窄孔径中孔棉秆活性炭的制备与性能表征

李坤权, 李烨, 郑正, 梅成兵, 贾佳祺. 窄孔径中孔棉秆活性炭的制备与性能表征[J]. 环境化学, 2013, 32(11): 2134-2141. doi: 10.7524/j.issn.0254-6108.2013.11.017
引用本文: 李坤权, 李烨, 郑正, 梅成兵, 贾佳祺. 窄孔径中孔棉秆活性炭的制备与性能表征[J]. 环境化学, 2013, 32(11): 2134-2141. doi: 10.7524/j.issn.0254-6108.2013.11.017
LI Kunquan, LI Ye, ZHENG Zheng, MEI Chengbing, JIA Jiaqi. Preparation, charcterization and adsorption performance of mesoporous cotton stalk activated carbon with narrow pore size distribution[J]. Environmental Chemistry, 2013, 32(11): 2134-2141. doi: 10.7524/j.issn.0254-6108.2013.11.017
Citation: LI Kunquan, LI Ye, ZHENG Zheng, MEI Chengbing, JIA Jiaqi. Preparation, charcterization and adsorption performance of mesoporous cotton stalk activated carbon with narrow pore size distribution[J]. Environmental Chemistry, 2013, 32(11): 2134-2141. doi: 10.7524/j.issn.0254-6108.2013.11.017

窄孔径中孔棉秆活性炭的制备与性能表征

  • 基金项目:

    国家自然科学基金(51102136),教育部博士点基金(20110097120021)资助。

Preparation, charcterization and adsorption performance of mesoporous cotton stalk activated carbon with narrow pore size distribution

  • Fund Project:
  • 摘要: 以棉秆为原料,采用一步磷酸活化法制备了孔径集中在10 nm以内的高比表面棉秆基生物质活性炭吸附材料,利用氮气吸附、红外光谱FT-IR、扫描电子显微镜SEM等技术对制备的棉秆基生物质活性炭表面物化性质进行了分析,并通过BJH方程、DFT密度函数理论及Horvath-Kawazoe方程对制备的活性炭孔结构进行了表征计算,研究了浸渍比、活化温度、活化时间等工艺参数对生物质炭得率、元素组成、孔结构及化学官能团等物化性质的影响,并考察了制备生物质炭对水中以碘、2,4二硝基苯酚、铅(Ⅱ)、亚甲基蓝等不同分子尺寸物质的吸附性能.结果表明,在浸渍比3∶2、活化温度500℃、活化时间2 h的条件下,通过磷酸活化棉秆,能制备出孔径范围分布在10 nm范围内,富含氧酸官能团的高比表面生物质炭,其得率高达47.87%,孔容、比表面积、含氧酸官能团含量分别为0.982 cm3·g-1、1570 m2·g-1、1.43 mmol·g-1,中孔率超过36%,且98%以上的中孔分布在10 nm以内.该窄孔径中孔炭对水中碘、2,4二硝基苯酚、亚甲基蓝与铅(Ⅱ)的吸附值分别为1007、336、153 mg·g-1与121 mg·g-1,表明该棉秆基窄孔径中孔炭对水中不同分子尺寸的物质均具有很好的吸附性能,是一种良好的生物质液相吸附材料.
  • 加载中
  • [1] Blanco A A G, de Oliveira J C A, López R, et al. A study of the pore size distribution for activated carbon monoliths and their relationship with the storage of methane and hydrogen[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010,357 (1/3):74-83
    [2] 李桂芬,万建新,黄向前,等. 多壁碳纳米管与活性炭吸附中分子毒素的比较[J]. 生物医学工程学杂志, 2011, 28 (4):758-762
    [3] 张婧怡,石宝友,解建坤,等. 活性炭物化性质对吸附天然水体中有机污染物的影响[J]. 环境科学, 2011,32 (2):494-452
    [4] Wu X, Wu D, Fu R, et al. Preparation of carbon aerogels with different pore structures and their fixed bed adsorption properties for dye removal[J]. Dyes and Pigments, 2012, 95 (3):689-694
    [5] Castro-Muñiz A, Suárez-García F, Martínez-Alonso A, et al. Activated carbon fibers with a high content of surface functional groups by phosphoric acid activation of PPTA[J]. Journal of Colloid and Interface Science, 2011, 361 (1):307-315
    [6] Hashisho Z, Rood M J, Barot S, et al. Role of functional groups on the microwave attenuation and electric resistivity of activated carbon fiber cloth[J]. Carbon, 2009, 47 (7):1814-1823
    [7] Li N, Almarri M, Ma X L, et al. The role of surface oxygen-containing functional groups in liquid-phase adsorptive denitrogenation by activated carbon[J]. New Carbon Materials, 2011, 26 (6):470-478
    [8] 刘雪梅,蒋剑春,孙康,等. 热解活化法制备微孔发达椰壳活性炭及其吸附性能研究[J]. 林产化学与工业,2012,32 (2):126-130
    [9] Depci T, Kul A R, nal Y. Competitive adsorption of lead and zinc from aqueous solution on activated carbon prepared from Van apple pulp: Study in single-- and multi--solute systems[J]. Chemical Engineering Journal, 2012,200-202:224-236
    [10] 徐涛,刘晓勤, 磷酸活化法制备花生壳活性炭工艺[J]. 化学工程, 2009, 37 (11): 69-74
    [11]
    [12] Zuo S, Yang J, Liu J, et al. Significance of the carbonization of volatile pyrolytic products on the properties of activated carbons from phosphoric acid activation of lignocellulosic material[J]. Fuel Processing Technology, 2009, 90 (7/8): 994-1001
    [13] Du T, Kang S, Zhang J, et al. Yield and physiological responses of cotton to partial root-zone irrigation in the oasis field of northwest China[J]. Agricultural Water Management, 2006, 84 (1/2): 41-52
    [14] Li N, Almarri M, Ma X l, et al. The role of surface oxygen--containing functional groups in liquid--phase adsorptive denitrogenation by activated carbon[J]. Carbon, 2012, 50 (5):2063-2064
    [15] Moriyama K, Machida M, Akikawa M, et al. Influence of surface acidic functional groups on activated carbons for adsorption and desorption kinetics of phenol from aqueous solutions[J]. Carbon, 2008, 46 (7): 1110-1111
    [16] Dolas H, Sahin O, Saka C, et al. A new method on producing high surface area activated carbon: The effect of salt on the surface area and the pore size distribution of activated carbon prepared from pistachio shell[J]. Chemical Engineering Journal, 2011, 166 (1):191-197
    [17] Jensen B, Kuznetsova T, Kvamme B, et al. Molecular dynamics study of selective adsorption of PCB on activated carbon[J]. Fluid Phase Equilibria, 2011, 307 (1):58-65
    [18] Carrott P J M, Ribeiro Carrott M M L, Suhas, Comparison of the Dubinin-Radushkevich and Quenched Solid Density Functional Theory approaches for the characterisation of narrow microporosity in activated carbons obtained by chemical activation with KOH or NaOH of Kraft and hydrolytic lignins[J]. Carbon, 2010, 48 (14): 4162-4169
    [19] Altenor S, Carene B, Emmanuel E, et al. Adsorption studies of methylene blue and phenol onto vetiver roots activated carbon prepared by chemical activation[J]. Journal of Hazardous Materials, 2009, 165 (1/3):1029-1039
    [20] Mezohegyi G, van der Zee F P, Font J, et al. Towards advanced aqueous dye removal processes: A short review on the versatile role of activated carbon[J]. Journal of Environmental Management, 2012, 102:148-164
    [21] Demiral H, Demiral, Karabacakoğlu B, et al. Production of activated carbon from olive bagasse by physical activation[J]. Chemical Engineering Research and Design, 2011, 89 (2):206-213
    [22] Sun Y, Yue Q, Gao B, et al. Comparative study on characterization and adsorption properties of activated carbons with H3PO4 and H4P2O7 activation employing Cyperus alternifolius as precursor[J]. Chemical Engineering Journal, 2012, 182:790-797
    [23] 陈再明, 方远, 徐义亮, 等.水稻秸秆生物碳对重金属 Pb2+的吸附作用及影响因素[J]. 环境科学学报, 2012, 32(4): 769-776
    [24] 蒋新元, 罗辉, 胡迅, 等. 竹材加工剩余物制备竹活性炭及其对Pb2+的吸附性能[J].环境污染与防治, 2008,30(12):32-35
    [25] Xu T, Liu X Q. Peanut shell activated carbon: Characterization, sunface modification and adsorption of Pb2+from aqueous solution[J]. Chinese Journal of Chemical Engineering, 2008, 16(3):401-406
    [26] 安增莉, 侯艳伟, 蔡超, 等. 水稻秸秆生物炭对Pb(Ⅱ)的吸附特性[J]. 环境化学, 2011, 30(11):1851-1857
  • 加载中
计量
  • 文章访问数:  1375
  • HTML全文浏览数:  1355
  • PDF下载数:  494
  • 施引文献:  0
出版历程
  • 收稿日期:  2013-01-20
李坤权, 李烨, 郑正, 梅成兵, 贾佳祺. 窄孔径中孔棉秆活性炭的制备与性能表征[J]. 环境化学, 2013, 32(11): 2134-2141. doi: 10.7524/j.issn.0254-6108.2013.11.017
引用本文: 李坤权, 李烨, 郑正, 梅成兵, 贾佳祺. 窄孔径中孔棉秆活性炭的制备与性能表征[J]. 环境化学, 2013, 32(11): 2134-2141. doi: 10.7524/j.issn.0254-6108.2013.11.017
LI Kunquan, LI Ye, ZHENG Zheng, MEI Chengbing, JIA Jiaqi. Preparation, charcterization and adsorption performance of mesoporous cotton stalk activated carbon with narrow pore size distribution[J]. Environmental Chemistry, 2013, 32(11): 2134-2141. doi: 10.7524/j.issn.0254-6108.2013.11.017
Citation: LI Kunquan, LI Ye, ZHENG Zheng, MEI Chengbing, JIA Jiaqi. Preparation, charcterization and adsorption performance of mesoporous cotton stalk activated carbon with narrow pore size distribution[J]. Environmental Chemistry, 2013, 32(11): 2134-2141. doi: 10.7524/j.issn.0254-6108.2013.11.017

窄孔径中孔棉秆活性炭的制备与性能表征

  • 1.  南京农业大学, 南京, 210031;
  • 2.  复旦大学环境科学与工程系, 上海, 200433;
  • 3.  江苏省高淳县农林局, 高淳, 211300
基金项目:

国家自然科学基金(51102136),教育部博士点基金(20110097120021)资助。

摘要: 以棉秆为原料,采用一步磷酸活化法制备了孔径集中在10 nm以内的高比表面棉秆基生物质活性炭吸附材料,利用氮气吸附、红外光谱FT-IR、扫描电子显微镜SEM等技术对制备的棉秆基生物质活性炭表面物化性质进行了分析,并通过BJH方程、DFT密度函数理论及Horvath-Kawazoe方程对制备的活性炭孔结构进行了表征计算,研究了浸渍比、活化温度、活化时间等工艺参数对生物质炭得率、元素组成、孔结构及化学官能团等物化性质的影响,并考察了制备生物质炭对水中以碘、2,4二硝基苯酚、铅(Ⅱ)、亚甲基蓝等不同分子尺寸物质的吸附性能.结果表明,在浸渍比3∶2、活化温度500℃、活化时间2 h的条件下,通过磷酸活化棉秆,能制备出孔径范围分布在10 nm范围内,富含氧酸官能团的高比表面生物质炭,其得率高达47.87%,孔容、比表面积、含氧酸官能团含量分别为0.982 cm3·g-1、1570 m2·g-1、1.43 mmol·g-1,中孔率超过36%,且98%以上的中孔分布在10 nm以内.该窄孔径中孔炭对水中碘、2,4二硝基苯酚、亚甲基蓝与铅(Ⅱ)的吸附值分别为1007、336、153 mg·g-1与121 mg·g-1,表明该棉秆基窄孔径中孔炭对水中不同分子尺寸的物质均具有很好的吸附性能,是一种良好的生物质液相吸附材料.

English Abstract

参考文献 (26)

返回顶部

目录

/

返回文章
返回